视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
高中数学必修一集合与函数的概念知识点+练习题含答案解析(非常详细)_百...
2025-09-30 22:49:21 责编:小OO
文档
第一部分集合与函数的概念

知识点整理

第一章 集合与函数概念

一:集合的含义与表示

1、集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东                           西,并且能判断一个给定的东西是否属于这个整体。

把研究对象统称为元素,把一些元素组成的总体叫集合,简称为集。

2、集合的中元素的三个特性:

(1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。

(2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。

(3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合

3、集合的表示:{…} 

(1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}

(2)集合的表示方法:列举法与描述法。

a、列举法:将集合中的元素一一列举出来  {a,b,c……}

b、描述法:

①区间法:将集合中元素的公共属性描述出来,写在大括号内表示集合。

{xR| x-3>2} ,{x| x-3>2}

②语言描述法:例:{不是直角三角形的三角形}

③Venn图:画出一条封闭的曲线,曲线里面表示集合。

4、集合的分类:

(1)有限集:含有有限个元素的集合

(2)无限集:含有无限个元素的集合

(3)空集:不含任何元素的集合  

5、元素与集合的关系:

      (1)元素在集合里,则元素属于集合,即:aA

      (2)元素不在集合里,则元素不属于集合,即:a¢A

◆注意:常用数集及其记法:

非负整数集(即自然数集) 记作:N    

正整数集  N*或 N+  

整数集Z  

有理数集Q  

实数集R

6、集合间的基本关系

(1).“包含”关系(1)—子集

定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系,称集合A是集合B的子集。记作:(或BA)

注意:有两种可能(1)A是B的一部分;

(2)A与B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作AB或BA

(2).“包含”关系(2)—真子集

如果集合,但存在元素xB且x¢A,则集合A是集合B的真子集

如果AB,且A B那就说集合A是集合B的真子集,记作AB(或BA)读作A真含与B

(3).“相等”关系:A=B  

“元素相同则两集合相等”

如果AB  同时 BA 那么A=B

(4). 不含任何元素的集合叫做空集,记为Φ

规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

(5)集合的性质

① 任何一个集合是它本身的子集。AA

②如果 AB, BC ,那么 AC

 ③如果AB且BC,那么AC

④有n个元素的集合,含有2n个子集,2n-1个真子集

7、集合的运算

运算类型交   集

并   集

补   集

定  义

由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB}.

由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB ={x|xA,或xB}).

全集:一般,若一个集合汉语我们所研究问题中这几道的所有元素,我们就称这个集合为全集,记作:U

设S是一个集合,A是S的一个子集,由S中所有不属于A的元素组成的集合,叫做S中子集A的补集(或余集)记作,

CSA=

韦恩图示
性    质

A ∩ A=A  

A ∩Φ=Φ

A ∩B=BA

A ∩BA  A ∩BB

A U A=A   

A U Φ=A

A U B=B U A 

A U BA

A U BB

(CuA)∩(CuB)= Cu(AUB)

(CuA) U (CuB)= Cu(A∩B)

AU(CuA)=U

A∩(CuA)=Φ.

二、函数的概念

1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.

(1)其中,x叫做自变量,x的取值范围A叫做函数的定义域;

(2)与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.

2.函数的三要素:定义域、值域、对应法则

3.函数的表示方法:(1)解析法:明确函数的定义域

(2)图想像:确定函数图像是否连线,函数的图像可以是连续的曲线、直线、折线、离散的点等等。

(3)列表法:选取的自变量要有代表性,可以反应定义域的特征。

4、函数图象知识归纳

(1)定义:在平面直角坐标系中,以函数 y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数 y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上 . 

(2) 画法

A、描点法:  B、图象变换法:平移变换;伸缩变换;对称变换,即平移。

 (3)函数图像平移变换的特点:

      1)加左减右——————只对x

      2)上减下加——————只对y

  3)函数y=f(x)  关于X轴对称得函数y=-f(x)

4)函数y=f(x)  关于Y轴对称得函数y=f(-x)

5)函数y=f(x)  关于原点对称得函数y=-f(-x)

6)函数y=f(x)  将x轴下面图像翻到x轴上面去,x轴上面图像不动得

函数y=| f(x)|

7)函数y=f(x)  先作x≥0的图像,然后作关于y轴对称的图像得函数f(|x|)

三、函数的基本性质

1、函数解析式子的求法

(1)、函数的解析式是函数的一种表示方法,要求两个变量之间的函数关系时,一是要求出它们之间的对应法则,二是要求出函数的定义域.

(2)、求函数的解析式的主要方法有: 

1)代入法:

2)待定系数法:

3)换元法:

4)拼凑法:

2.定义域:能使函数式有意义的实数x的集合称为函数的定义域。

求函数的定义域时列不等式组的主要依据是:

(1)分式的分母不等于零; 

(2)偶次方根的被开方数不小于零;

    (3)对数式的真数必须大于零;

(4)指数、对数式的底必须大于零且不等于1.  

(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.

(6)指数为零底不可以等于零,  

(7)实际问题中的函数的定义域还要保证实际问题有意义.

3、相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)

4、区间的概念:

(1)区间的分类:开区间、闭区间、半开半闭区间

(2)无穷区间

(3)区间的数轴表示

5、值域 (先考虑其定义域)

(1)观察法:直接观察函数的图像或函数的解析式来求函数的值域;  

(2)反表示法:针对分式的类型,把Y关于X的函数关系式化成X关于Y的函数关系式,由X的范围类似求Y的范围。

(3)配方法:针对二次函数的类型,根据二次函数图像的性质来确定函数的值域,注意定义域的范围。  

(4)代换法(换元法):作变量代换,针对根式的题型,转化成二次函数的类型。

6.分段函数   

(1)在定义域的不同部分上有不同的解析表达式的函数。

(2)各部分的自变量的取值情况.

(3)分段函数的定义域是各段定义域的交集,值域是各段值域的并集. 

(4)常用的分段函数有取整函数、符号函数、含绝对值的函数

7.映射

一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:AB为从集合A到集合B的一个映射。记作“f(对应关系):A(原象)B(象)”

对于映射f:A→B来说,则应满足:

(1)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;

(2)集合A中不同的元素,在集合B中对应的象可以是同一个;

(3)不要求集合B中的每一个元素在集合A中都有原象。

   

注意:映射是针对自然界中的所有事物而言的,而函数仅仅是针对数字来说的。所以函数是映射,而映射不一定的函数

8、函数的单调性(局部性质)及最值

(1)、增减函数

(1)设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1(2)如果对于区间D上的任意两个自变量的值x1,x2,当x1注意:函数的单调性是函数的局部性质;函数的单调性还有单调不增,和单调不减两种

(2)、 图象的特点

如果函数y=f(x)在某个区间是增函数或减函数,那么说函数y=f(x)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.

(3)、函数单调区间与单调性的判定方法

(A) 定义法:

任取x1,x2∈D,且x1作差f(x1)-f(x2);

变形(通常是因式分解和配方);

定号(即判断差f(x1)-f(x2)的正负);

下结论(指出函数f(x)在给定的区间D上的单调性).

(B)图象法(从图象上看升降)

(C)复合函数的单调性

复合函数:如果y=f(u)(u∈M),u=g(x)(x∈A),则 y=f[g(x)]=F(x)(x∈A)  称为f、g的复合函数。

复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”

注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间和在一起写成其并集. 

9:函数的奇偶性(整体性质)

(1)、偶函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=f(x),那么f(x)就叫做偶函数.

(2)、奇函数

一般地,对于函数f(x)的定义域内的任意一个x,都有f(-x)=—f(x),那么f(x)就叫做奇函数.

(3)、具有奇偶性的函数的图象的特征

偶函数的图象关于y轴对称;奇函数的图象关于原点对称.

利用定义判断函数奇偶性的步骤:

a、首先确定函数的定义域,并判断其是否关于原点对称;若是不对称,则是非奇非偶的函数;若对称,则进行下面判断;

b、确定f(-x)与f(x)的关系;

c、作出相应结论:若f(-x) = f(x) 或 f(-x)-f(x) = 0,则f(x)是偶函数;

若f(-x) =-f(x) 或 f(-x)+f(x) = 0,则f(x)是奇函数.

(4)利用奇偶函数的四则运算以及复合函数的奇偶性

     a、在公共定义域内,偶函数的加减乘除仍为偶函数;

                         奇函数的加减仍为奇函数;

奇数个奇函数的乘除认为奇函数;

偶数个奇函数的乘除为偶函数;

一奇一偶的乘积是奇函数;

      a、复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇。

                           

注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,

(1)再根据定义判定;

(2)由 f(-x)±f(x)=0或f(x)/f(-x)=±1来判定; 

(3)利用定理,或借助函数的图象判定 .

10、函数最值及性质的应用

(1)、函数的最值

a 利用二次函数的性质(配方法)求函数的最大(小)值

b 利用图象求函数的最大(小)值

c 利用函数单调性的判断函数的最大(小)值:

如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);

如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);

(2)、函数的奇偶性与单调性

   奇函数在关于原点对称的区间上有相同的单调性;

   偶函数在关于原点对称的区间上有相反的单调性。

(3)、判断含糊单调性时也可以用作商法,过程与作差法类似,区别在于作差法是与0作比较,作商法是与1作比较。

(4)、绝对值函数求最值,先分段,再通过各段的单调性,或图像求最值。

(5)、在判断函数的奇偶性时候,若已知是奇函数可以直接用f(0)=0,但是f(0)=0并不一定可以判断函数为奇函数。(高一阶段可以利用奇函数f(0)=0)。

第二部分练习题及解析

第一章 集合与函数的概念

一、选择题(每小题5分,共60分)

1.集合{1,2,3}的所有真子集的个数为(  )

A.3                B.6

C.7                D.8

解析:含一个元素的有{1},{2},{3},共3个;含两个元素的有{1,2},{1,3},{2,3},共3个;空集是任何非空集合的真子集,故有7个.

答案:C

2.下列五个写法,其中错误写法的个数为(  )

①{0}∈{0,2,3};②Ø {0};③{0,1,2}⊆{1,2,0};④0∈Ø;⑤0∩Ø=Ø

A.1                B.2  

C.3                D.4

解析:②③正确.

答案:C

3.使根式与分别有意义的x的允许值集合依次为M、F,则使根式+有意义的x的允许值集合可表示为(  )

A.M∪F                B.M∩F  C.∁MF                D.∁FM

解析:根式+有意义,必须与同时有意义才可.

答案:B

4.已知M={x|y=x2-2},N={y|y=x2-2},则M∩N等于(  )

A.N                B.M  C.R                D.Ø

解析:M={x|y=x2-2}=R,N={y|y=x2-2}={y|y≥-2},故M∩N=N.

答案:A

5.函数y=x2+2x+3(x≥0)的值域为(  )

A.R                B.[0,+∞)  C.[2,+∞)                D.[3,+∞)

解析:y=x2+2x+3=(x+1)2+2,∴函数在区间[0,+∞)上为增函数,故y≥(0+1)2+2=3.

答案:D

6.等腰三角形的周长是20,底边长y是一腰的长x的函数,则y等于(  )

A.20-2x(0C.20-2x(5≤x≤10)                D.20-2x(5解析:C=20=y+2x,由三角形两边之和大于第三边可知2x>y=20-2x,x>5.

答案:D

7.用固定的速度向图1甲形状的瓶子注水,则水面的高度h和时间t之间的关系是图1乙中的(  )

 乙

图1

解析:水面升高的速度由慢逐渐加快.

答案:B

8.已知y=f(x)是定义在R上的奇函数,则下列函数中为奇函数的是(  )

①y=f(|x|)  ②y=f(-x)  ③y=xf(x)  ④y=f(x)+x

A.①③                B.②③  C.①④                D.②④

解析:因为y=f(x)是定义在R上的奇函数,所以f(-x)=-f(x).①y=f(|x|)为偶函数;②y=f(-x)为奇函数;③令F(x)=xf(x),所以F(-x)=(-x)f(-x)=(-x)·[-f(x)]=xf(x).所以F(-x)=F(x).所以y=xf(x)为偶函数;④令F(x)=f(x)+x,所以F(-x)=f(-x)+(-x)=-f(x)-x=-[f(x)+x].所以F(-x)=-F(x).所以y=f(x)+x为奇函数.

答案:D

9.已知0≤x≤,则函数f(x)=x2+x+1(  )

A.有最小值-,无最大值                B.有最小值,最大值1

C.有最小值1,最大值                D.无最小值和最大值

解析:f(x)=x2+x+1=(x+)2+,画出该函数的图象知,f(x)在区间[0,]上是增函数,所以f(x)min=f(0)=1,f(x)max=f()=.

答案:C

10.已知函数f(x)的定义域为[a,b],函数y=f(x)的图象如图2甲所示,则函数f(|x|)的图象是图2乙中的(  )

 乙

图2

解析:因为y=f(|x|)是偶函数,所以y=f(|x|)的图象是由y=f(x)把x≥0的图象保留,再关于y轴对称得到的.

答案:B

11.若偶函数f(x)在区间(-∞,-1]上是增函数,则(  )

A.f(-)C.f(2)解析:由f(x)是偶函数,得f(2)=f(-2),又f(x)在区间(-∞,-1]上是增函数,且-2<-<-1,则f(2)答案:D

12.已知函数f(x)是定义在实数集R上的不恒为零的偶函数,且对任意实数x都有xf(x+1)=(1+x)f(x),则f的值是(  )

A.0  B.   C.1  D. 

解析:令x=-,则-f()=f(-),又∵f()=f(-),∴f()=0;令x=, f()=f(),得f()=0;令x=, f()=f(),得f()=0;而0·f(1)=f(0)=0,∴f=f(0)=0,故选A.

答案:A

第Ⅱ卷(非选择题,共90分)

二、填空题(每小题5分,共20分)

13.设全集U={a,b,c,d,e},A={a,c,d},B={b,d,e},则∁UA∩∁UB=________.

解析:∁UA∩∁UB=∁U(A∪B),而A∪B={a,b,c,d,e}=U.

答案:Ø

14.设全集U=R,A={x|x≥1},B={x|-1≤x<2},则∁U(A∩B)=________.

解析:A∩B={x|1≤x<2},∴∁R(A∩B)={x|x<1或x≥2}.

答案:{x|x<1或x≥2}

15.已知函数f(x)=x2+2(a-1)x+2在区间(-∞,3]上为减函数,求实数a的取值范围为________.

解析:函数f(x)的对称轴为x=1-a,则由题知:1-a≥3即a≤-2.

答案:a≤-2

16.若f(x)=(m-1)x2+6mx+2是偶函数,则f(0)、f(1)、f(-2)从小到大的顺序是__________.

解析:∵f(x)=(m-1)x2+6mx+2是偶函数,∴m=0.

∴f(x)=-x2+2.∴f(0)=2,f(1)=1,f(-2)=-2,∴f(-2)答案:f(-2)三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)

17.(10分)设A={x|-2≤x≤5},B={x|m-1≤x≤2m+1},

(1)当x∈N*时,求A的子集的个数;

(2)当x∈R且A∩B=Ø时,求m的取值范围.

解:(1)∵x∈N*且A={x|-2≤x≤5},

∴A={1,2,3,4,5}.故A的子集个数为25=32个.

(2)∵A∩B=Ø,

∴m-1>2m+1或2m+1<-2或m-1>5,

∴m<-2或m>6.

18.(12分)已知集合A={-1,1},B={x|x2-2ax+b=0},若B≠Ø且B⊆A,求a,b的值.

解:(1)当B=A={-1,1}时,易得a=0,b=-1;

(2)当B含有一个元素时,由Δ=0得a2=b,

当B={1}时,由1-2a+b=0,得a=1,b=1

当B={-1}时,由1+2a+b=0,得a=-1,b=1.

19.(12分)已知函数f(x)= (a,b为常数,且a≠0),满足f(2)=1,方程f(x)=x有唯一实数解,求函数f(x)的解析式和f[f(-4)]的值.

解:∵f(x)=且f(2)=1,∴2=2a+b.

又∵方程f(x)=x有唯一实数解.

∴ax2+(b-1)x=0(a≠0)有唯一实数解.

故(b-1)2-4a×0=0,即b=1,又上式2a+b=2,可得:a=,从而f(x)==,

∴f(-4)==4,f(4)==,即f[f(-4)]=.

20.(12分)已知函数f(x)=4x2-4ax+(a2-2a+2)在闭区间[0,2]上有最小值3,求实数a的值.

解:f(x)=42+2-2a.

(1)当<0即a<0时,f(x)min=f(0)=a2-2a+2=3,解得:a=1-.

(2)0≤≤2即0≤a≤4时,f(x)min=f=2-2a=3,解得:a=- (舍去).

(3)  >2即a>4时,f(x)min=f(2)=a2-10a+18=3,解得:a=5+,

综上可知:a的值为1-或5+.

21.(12分)某公司需将一批货物从甲地运到乙地,现有汽车、火车两种运输工具可供选择.若该货物在运输过程中(含装卸时间)的损耗为300元/小时,其他主要参考数据如下:

运输工具途中速度(千米/小时)

途中费用(元/千米)

装卸时间(小时)

装卸费用(元)

汽车50821000
火车100441800
问:如何根据运输距离的远近选择运输工具,使运输过程中的费用与损耗之和最小?

解:设甲、乙两地距离为x千米(x>0),选用汽车、火车运输时的总支出分别为y1和y2.

由题意得两种工具在运输过程中(含装卸)的费用与时间如下表:

运输工具途中及装卸费用途中时间
汽车8x+1000

+2

火车4x+1800

+4

于是y1=8x+1000+(+2)×300=14x+1600,

y2=4x+1800+(+4)×300=7x+3000.

令y1-y2<0得x<200.

①当0②当x=200时,y1=y2,此时选用汽车或火车均可;

③当x>200时,y1>y2,此时应选用火车.

故当距离小于200千米时,选用汽车较好;当距离等于200千米时,选用汽车或火车均可;当距离大于200千米时,选用火车较好.

22.(12分)已知f(x)的定义域为(0,+∞),且满足f(2)=1,f(xy)=f(x)+f(y),又当x2>x1>0时,f(x2)>f(x1).

(1)求f(1)、f(4)、f(8)的值;

(2)若有f(x)+f(x-2)≤3成立,求x的取值范围.

解:(1)f(1)=f(1)+f(1),∴f(1)=0,f(4)=f(2)+f(2)=1+1=2,f(8)=f(2)+f(4)=2+1=3.

(2)∵f(x)+f(x-2)≤3,∴f[x(x-2)]≤f(8),又∵对于函数f(x)有x2>x1>0时f(x2)>f(x1),∴f(x)在(0,+∞)上为增函数.

∴⇒2下载本文

显示全文
专题