视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
2018新课标全国1卷(文数)
2025-09-30 22:49:36 责编:小OO
文档
2018年全国统一高考数学试卷(文科)(新课标Ⅰ)

一、选择题:本题共12小题,每小题5分,共60分。

1.(5分)(2018•新课标Ⅰ)已知集合A={0,2},B={﹣2,﹣1,0,1,2},则A∩B=(  )

A.{0,2}    B.{1,2}    C.{0}    D.{﹣2,﹣1,0,1,2}

2.(5分)(2018•新课标Ⅰ)设z=+2i,则|z|=(  )

A.0    B.    C.1    D.

3.(5分)(2018•新课标Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:

则下面结论中不正确的是(  )

A.新农村建设后,种植收入减少

B.新农村建设后,其他收入增加了一倍以上

C.新农村建设后,养殖收入增加了一倍

D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半

4.(5分)(2018•新课标Ⅰ)已知椭圆C:+=1的一个焦点为(2,0),则C的离心率为(  )

A.    B.    C.    D.

5.(5分)(2018•新课标Ⅰ)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为(  )

A.12π    B.12π    C.8π    D.10π

6.(5分)(2018•新课标Ⅰ)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为(  )

A.y=﹣2x    B.y=﹣x    C.y=2x    D.y=x

7.(5分)(2018•新课标Ⅰ)在△ABC中,AD为BC边上的中线,E为AD的中点,则=(  )

A.﹣    B.﹣    C.+    D.+

8.(5分)(2018•新课标Ⅰ)已知函数f(x)=2cos2x﹣sin2x+2,则(  )

A.f(x)的最小正周期为π,最大值为3

B.f(x)的最小正周期为π,最大值为4

C.f(x)的最小正周期为2π,最大值为3

D.f(x)的最小正周期为2π,最大值为4

9.(5分)(2018•新课标Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为(  )

A.2    B.2    C.3    D.2

10.(5分)(2018•新课标Ⅰ)在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为(  )

A.8    B.6    C.8    D.8

11.(5分)(2018•新课标Ⅰ)已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos2α=,则|a﹣b|=(  )

A.    B.    C.    D.1

12.(5分)(2018•新课标Ⅰ)设函数f(x)=,则满足f(x+1)<f(2x)的x的取值范围是(  )

A.(﹣∞,﹣1]    B.(0,+∞)    C.(﹣1,0)    D.(﹣∞,0)

 

二、填空题:本题共4小题,每小题5分,共20分。

13.(5分)(2018•新课标Ⅰ)已知函数f(x)=log2(x2+a),若f(3)=1,则a=     .

14.(5分)(2018•新课标Ⅰ)若x,y满足约束条件,则z=3x+2y的最大值为     .

15.(5分)(2018•新课标Ⅰ)直线y=x+1与圆x2+y2+2y﹣3=0交于A,B两点,则|AB|=     .

16.(5分)(2018•新课标Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c.已知bsinC+csinB=4asinBsinC,b2+c2﹣a2=8,则△ABC的面积为     .

 

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。

17.(12分)(2018•新课标Ⅰ)已知数列{an}满足a1=1,nan+1=2(n+1)an,设bn=.

(1)求b1,b2,b3;

(2)判断数列{bn}是否为等比数列,并说明理由;

(3)求{an}的通项公式.

18.(12分)(2018•新课标Ⅰ)如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA.

(1)证明:平面ACD⊥平面ABC;

(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=DA,求三棱锥Q﹣ABP的体积.

19.(12分)(2018•新课标Ⅰ)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:

未使用节水龙头50天的日用水量频数分布表 

日用水量[0,0.1)

[0.1,0.2)

[0.2,0.3)

[0.3,0.4)

[0.4,0.5)

[0.5,0.6)

[0.6,0.7)

频数13249265
使用了节水龙头50天的日用水量频数分布表

日用水量[0,0.1)

[0.1,0.2)

[0.2,0.3)

[0.3,0.4)

[0.4,0.5)

[0.5,0.6)

频数151310165
(1)作出使用了节水龙头50天的日用水量数据的频率分布直方图;

(2)估计该家庭使用节水龙头后,日用水量小于0.35m3的概率;

(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表)

20.(12分)(2018•新课标Ⅰ)设抛物线C:y2=2x,点A(2,0),B(﹣2,0),过点A的直线l与C交于M,N两点.

(1)当l与x轴垂直时,求直线BM的方程;

(2)证明:∠ABM=∠ABN.

21.(12分)(2018•新课标Ⅰ)已知函数f(x)=aex﹣lnx﹣1.

(1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间;

(2)证明:当a≥时,f(x)≥0.

 

(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。[选修4-4:坐标系与参数方程](10分)

22.(10分)(2018•新课标Ⅰ)在直角坐标系xOy中,曲线C1的方程为y=k|x|+2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2+2ρcosθ﹣3=0.

(1)求C2的直角坐标方程;

(2)若C1与C2有且仅有三个公共点,求C1的方程.

 

[选修4-5:不等式选讲](10分)

23.(2018•新课标Ⅰ)已知f(x)=|x+1|﹣|ax﹣1|.

(1)当a=1时,求不等式f(x)>1的解集;

(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.

 

2018年全国统一高考数学试卷(文科)(新课标Ⅰ)

参与试题解析

 一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.A;2.C;3.A;4.C;5.B;6.D;7.A;8.B;9.B;10.C;11.B;12.D;

 

二、填空题:本题共4小题,每小题5分,共20分。

13.﹣7;14.6;15.2;16.;

一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)(2018•新课标Ⅰ)已知集合A={0,2},B={﹣2,﹣1,0,1,2},则A∩B=(  )

A.{0,2}    B.{1,2}    C.{0}    D.{﹣2,﹣1,0,1,2}

【分析】直接利用集合的交集的运算法则求解即可.

【解答】解:集合A={0,2},B={﹣2,﹣1,0,1,2},

则A∩B={0,2}.

故选:A.

 

2.(5分)(2018•新课标Ⅰ)设z=+2i,则|z|=(  )

A.0    B.    C.1    D.

【分析】利用复数的代数形式的混合运算化简后,然后求解复数的摸.

【解答】解:z=+2i=+2i=﹣i+2i=i,

则|z|=1.

故选:C.

 

3.(5分)(2018•新课标Ⅰ)某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:

则下面结论中不正确的是(  )

A.新农村建设后,种植收入减少

B.新农村建设后,其他收入增加了一倍以上

C.新农村建设后,养殖收入增加了一倍

D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半

【分析】设建设前经济收入为a,建设后经济收入为2a.通过选项逐一分析新农村建设前后,经济收入情况,利用数据推出结果.

【解答】解:设建设前经济收入为a,建设后经济收入为2a.

A项,种植收入37×2a﹣60%a=14%a>0,

故建设后,种植收入增加,故A项错误.

B项,建设后,其他收入为5%×2a=10%a,

建设前,其他收入为4%a,

故10%a÷4%a=2.5>2,

故B项正确.

C项,建设后,养殖收入为30%×2a=60%a,

建设前,养殖收入为30%a,

故60%a÷30%a=2,

故C项正确.

D项,建设后,养殖收入与第三产业收入总和为

(30%+28%)×2a=58%×2a,

经济收入为2a,

故(58%×2a)÷2a=58%>50%,

故D项正确.

因为是选择不正确的一项,

故选:A.

 

4.(5分)(2018•新课标Ⅰ)已知椭圆C:+=1的一个焦点为(2,0),则C的离心率为(  )

A.    B.    C.    D.

【分析】利用椭圆的焦点坐标,求出a,然后求解椭圆的离心率即可.

【解答】解:椭圆C:+=1的一个焦点为(2,0),

可得a2﹣4=4,解得a=2,

∵c=2,

∴e===.

故选:C.

 

5.(5分)(2018•新课标Ⅰ)已知圆柱的上、下底面的中心分别为O1,O2,过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为(  )

A.12π    B.12π    C.8π    D.10π

【分析】利用圆柱的截面是面积为8的正方形,求出圆柱的底面直径与高,然后求解圆柱的表面积.

【解答】解:设圆柱的底面直径为2R,则高为2R,

圆柱的上、下底面的中心分别为O1,O2,

过直线O1O2的平面截该圆柱所得的截面是面积为8的正方形,

可得:4R2=8,解得R=,

则该圆柱的表面积为:=12π.

故选:B.

 

6.(5分)(2018•新课标Ⅰ)设函数f(x)=x3+(a﹣1)x2+ax.若f(x)为奇函数,则曲线y=f(x)在点(0,0)处的切线方程为(  )

A.y=﹣2x    B.y=﹣x    C.y=2x    D.y=x

【分析】利用函数的奇偶性求出a,求出函数的导数,求出切线的向量然后求解切线方程.

【解答】解:函数f(x)=x3+(a﹣1)x2+ax,若f(x)为奇函数,

可得a=1,所以函数f(x)=x3+x,可得f′(x)=3x2+1,

曲线y=f(x)在点(0,0)处的切线的斜率为:1,

则曲线y=f(x)在点(0,0)处的切线方程为:y=x.

故选:D.

 

7.(5分)(2018•新课标Ⅰ)在△ABC中,AD为BC边上的中线,E为AD的中点,则=(  )

A.﹣    B.﹣    C.+    D.+

【分析】运用向量的加减运算和向量中点的表示,计算可得所求向量.

【解答】解:在△ABC中,AD为BC边上的中线,E为AD的中点,

=﹣=﹣

=﹣×(+)

=﹣,

故选:A.

 

8.(5分)(2018•新课标Ⅰ)已知函数f(x)=2cos2x﹣sin2x+2,则(  )

A.f(x)的最小正周期为π,最大值为3

B.f(x)的最小正周期为π,最大值为4

C.f(x)的最小正周期为2π,最大值为3

D.f(x)的最小正周期为2π,最大值为4

【分析】首先通过三角函数关系式的恒等变换,把函数的关系式变形成余弦型函数,进一步利用余弦函数的性质求出结果.

【解答】解:函数f(x)=2cos2x﹣sin2x+2,

=2cos2x﹣sin2x+2sin2x+2cos2x,

=4cos2x+sin2x,

=3cos2x+1,

=,

=,

故函数的最小正周期为π,

函数的最大值为,

故选:B.

 

9.(5分)(2018•新课标Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图.圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为(  )

A.2    B.2    C.3    D.2

【分析】判断三视图对应的几何体的形状,利用侧面展开图,转化求解即可.

【解答】解:由题意可知几何体是圆柱,底面周长16,高为:2,

直观图以及侧面展开图如图:

圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度:=2.

故选:B.

 

10.(5分)(2018•新课标Ⅰ)在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AC1与平面BB1C1C所成的角为30°,则该长方体的体积为(  )

A.8    B.6    C.8    D.8

【分析】画出图形,利用已知条件求出长方体的高,然后求解长方体的体积即可.

【解答】解:长方体ABCD﹣A1B1C1D1中,AB=BC=2,

AC1与平面BB1C1C所成的角为30°,

即∠AC1B=30°,可得BC1==2.

可得BB1==2.

所以该长方体的体积为:2×=8.

故选:C.

 

11.(5分)(2018•新课标Ⅰ)已知角α的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos2α=,则|a﹣b|=(  )

A.    B.    C.    D.1

【分析】推导出cos2α=2cos2α﹣1=,从而|cosα|=,进而|tanα|=||=|a﹣b|=.由此能求出结果.

【解答】解:∵角α的顶点为坐标原点,始边与x轴的非负半轴重合,

终边上有两点A(1,a),B(2,b),且cos2α=,

∴cos2α=2cos2α﹣1=,解得cos2α=,

∴|cosα|=,∴|sinα|==,

|tanα|=||=|a﹣b|===.

故选:B.

 

12.(5分)(2018•新课标Ⅰ)设函数f(x)=,则满足f(x+1)<f(2x)的x的取值范围是(  )

A.(﹣∞,﹣1]    B.(0,+∞)    C.(﹣1,0)    D.(﹣∞,0)

【分析】画出函数的图象,利用函数的单调性列出不等式转化求解即可.

【解答】解:函数f(x)=,的图象如图:

满足f(x+1)<f(2x),

可得:2x<0<x+1或2x<x+1≤0,

解得x∈(﹣∞,0).

故选:D.

 

二、填空题:本题共4小题,每小题5分,共20分。

13.(5分)(2018•新课标Ⅰ)已知函数f(x)=log2(x2+a),若f(3)=1,则a= ﹣7 .

【分析】直接利用函数的解析式,求解函数值即可.

【解答】解:函数f(x)=log2(x2+a),若f(3)=1,

可得:log2(9+a)=1,可得a=﹣7.

故答案为:﹣7.

 

14.(5分)(2018•新课标Ⅰ)若x,y满足约束条件,则z=3x+2y的最大值为 6 .

【分析】作出不等式组对应的平面区域,利用目标函数的几何意义进行求解即可.

【解答】解:作出不等式组对应的平面区域如图:

由z=3x+2y得y=﹣x+z,

平移直线y=﹣x+z,

由图象知当直线y=﹣x+z经过点A(2,0)时,直线的截距最大,此时z最大,

最大值为z=3×2=6,

故答案为:6

 

15.(5分)(2018•新课标Ⅰ)直线y=x+1与圆x2+y2+2y﹣3=0交于A,B两点,则|AB|= 2 .

【分析】求出圆的圆心与半径,通过点到直线的距离以及半径、半弦长的关系,求解即可.

【解答】解:圆x2+y2+2y﹣3=0的圆心(0,﹣1),半径为:2,

圆心到直线的距离为:=,

所以|AB|=2=2.

故答案为:2.

 

16.(5分)(2018•新课标Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c.已知bsinC+csinB=4asinBsinC,b2+c2﹣a2=8,则△ABC的面积为  .

【分析】直接利用正弦定理求出A的值,进一步利用余弦定理求出bc的值,最后求出三角形的面积.

【解答】解:△ABC的内角A,B,C的对边分别为a,b,c.

bsinC+csinB=4asinBsinC,

利用正弦定理可得sinBsinC+sinCsinB=4sinAsinBsinC,

由于sinBsinC≠0,

所以sinA=,

则A=

由于b2+c2﹣a2=8,

则:,

①当A=时,,

解得:bc=,

所以:.

②当A=时,,

解得:bc=﹣(不合题意),舍去.

故:.

故答案为:.

 

三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。第17~21题为必考题,每个试题考生都必须作答。第22、23题为选考题,考生根据要求作答。(一)必考题:共60分。

17.(12分)(2018•新课标Ⅰ)已知数列{an}满足a1=1,nan+1=2(n+1)an,设bn=.

(1)求b1,b2,b3;

(2)判断数列{bn}是否为等比数列,并说明理由;

(3)求{an}的通项公式.

【分析】(1)直接利用已知条件求出数列的各项.

(2)利用定义说明数列为等比数列.

(3)利用(1)(2)的结论,直接求出数列的通项公式.

【解答】解:(1)数列{an}满足a1=1,nan+1=2(n+1)an,

则:(常数),

由于,

故:,

数列{bn}是以b1为首项,2为公比的等比数列.

整理得:,

所以:b1=1,b2=2,b3=4.

(2)数列{bn}是为等比数列,

由于(常数);

(3)由(1)得:,

根据,

所以:.

 

18.(12分)(2018•新课标Ⅰ)如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA.

(1)证明:平面ACD⊥平面ABC;

(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=DA,求三棱锥Q﹣ABP的体积.

【分析】(1)可得AB⊥AC,AB⊥DA.且AD∩AB=A,即可得AB⊥面ADC,平面ACD⊥平面ABC;

(2)首先证明DC⊥面ABC,再根据BP=DQ=DA,可得三棱锥Q﹣ABP的高,求出三角形ABP的面积即可求得三棱锥Q﹣ABP的体积.

【解答】解:(1)证明:∵在平行四边形ABCM中,∠ACM=90°,∴AB⊥AC,

又AB⊥DA.且AD∩AB=A,

∴AB⊥面ADC,∴AB⊂面ABC,

∴平面ACD⊥平面ABC;

(2)∵AB=AC=3,∠ACM=90°,∴AD=AM=3,

∴BP=DQ=DA=2,

由(1)得DC⊥AB,又DC⊥CA,∴DC⊥面ABC,

∴三棱锥Q﹣ABP的体积V=

=××==1.

 

19.(12分)(2018•新课标Ⅰ)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:

未使用节水龙头50天的日用水量频数分布表 

日用水量[0,0.1)

[0.1,0.2)

[0.2,0.3)

[0.3,0.4)

[0.4,0.5)

[0.5,0.6)

[0.6,0.7)

频数13249265
使用了节水龙头50天的日用水量频数分布表

日用水量[0,0.1)

[0.1,0.2)

[0.2,0.3)

[0.3,0.4)

[0.4,0.5)

[0.5,0.6)

频数151310165
(1)作出使用了节水龙头50天的日用水量数据的频率分布直方图;

(2)估计该家庭使用节水龙头后,日用水量小于0.35m3的概率;

(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表)

【分析】(1)根据使用了节水龙头50天的日用水量频数分布表能作出使用了节水龙头50天的日用水量数据的频率分布直方图.

(2)根据频率分布直方图能求出该家庭使用节水龙头后,日用水量小于0.35m3的概率.

(3)由题意得未使用水龙头50天的日均水量为0.48,使用节水龙头50天的日均用水量为0.35,能此能估计该家庭使用节水龙头后,一年能节省多少水.

【解答】解:(1)根据使用了节水龙头50天的日用水量频数分布表,

作出使用了节水龙头50天的日用水量数据的频率分布直方图,如下图:

(2)根据频率分布直方图得:

该家庭使用节水龙头后,日用水量小于0.35m3的概率为:

p=(0.2+1.0+2.6+1)×0.1=0.48.

(3)由题意得未使用水龙头50天的日均水量为:

(1×0.05+3×0.15+2×0.25+4×0.35+9×0.45+26×0.55+5×0.65)=0.48,

使用节水龙头50天的日均用水量为:

(1×0.05+5×0.15+13×0.25+10×0.35+16×0.45+5×0.55)=0.35,

∴估计该家庭使用节水龙头后,一年能节省:365×(0.48﹣0.35)=47.45m3.

 

20.(12分)(2018•新课标Ⅰ)设抛物线C:y2=2x,点A(2,0),B(﹣2,0),过点A的直线l与C交于M,N两点.

(1)当l与x轴垂直时,求直线BM的方程;

(2)证明:∠ABM=∠ABN.

【分析】(1)当x=2时,代入求得M点坐标,即可求得直线BM的方程;

(2)设直线l的方程,联立,利用韦达定理及直线的斜率公式即可求得kBN+kBM=0,即可证明∠ABM=∠ABN.

【解答】解:(1)当l与x轴垂直时,x=2,代入抛物线解得y=±2,

所以M(2,2)或M(2,﹣2),

直线BM的方程:y=x+1,或:y=﹣x﹣1.

(2)证明:设直线l的方程为l:x=ty+2,M(x1,y1),N(x2,y2),

联立直线l与抛物线方程得,消x得y2﹣2ty﹣4=0,

即y1+y2=2t,y1y2=﹣4,

则有kBN+kBM=+===0,

所以直线BN与BM的倾斜角互补,

∴∠ABM=∠ABN.

 

21.(12分)(2018•新课标Ⅰ)已知函数f(x)=aex﹣lnx﹣1.

(1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间;

(2)证明:当a≥时,f(x)≥0.

【分析】(1)推导出x>0,f′(x)=aex﹣,由x=2是f(x)的极值点,解得a=,从而f(x)=ex﹣lnx﹣1,进而f′(x)=,由此能求出f(x)的单调区间.

(2)当a≥时,f(x)≥﹣lnx﹣1,设g(x)=﹣lnx﹣1,则﹣,由此利用导数性质能证明当a≥时,f(x)≥0.

【解答】解:(1)∵函数f(x)=aex﹣lnx﹣1.

∴x>0,f′(x)=aex﹣,

∵x=2是f(x)的极值点,

∴f′(2)=ae2﹣=0,解得a=,

∴f(x)=ex﹣lnx﹣1,∴f′(x)=,

当0<x<2时,f′(x)<0,当x>2时,f′(x)>0,

∴f(x)在(0,2)单调递减,在(2,+∞)单调递增.

(2)证明:当a≥时,f(x)≥﹣lnx﹣1,

设g(x)=﹣lnx﹣1,则﹣,

当0<x<1时,g′(x)<0,

当x>1时,g′(x)>0,

∴x=1是g(x)的最小值点,

故当x>0时,g(x)≥g(1)=0,

∴当a≥时,f(x)≥0.

 

(二)选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。[选修4-4:坐标系与参数方程](10分)

22.(10分)(2018•新课标Ⅰ)在直角坐标系xOy中,曲线C1的方程为y=k|x|+2.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ2+2ρcosθ﹣3=0.

(1)求C2的直角坐标方程;

(2)若C1与C2有且仅有三个公共点,求C1的方程.

【分析】(1)直接利用转换关系,把参数方程和极坐标方程与直角坐标方程进行转化.

(2)利用直线在坐标系中的位置,再利用点到直线的距离公式的应用求出结果.

【解答】解:(1)曲线C2的极坐标方程为ρ2+2ρcosθ﹣3=0.

转换为直角坐标方程为:x2+y2+2x﹣3=0,

转换为标准式为:(x+1)2+y2=4.

(2)由于曲线C1的方程为y=k|x|+2,则:该直线关于y轴对称,且恒过定点(0,2).

由于该直线与曲线C2的极坐标有且仅有三个公共点.

所以:必有一直线相切,一直线相交.

则:圆心到直线y=kx+2的距离等于半径2.

故:,

解得:k=或0,(0舍去)

故C1的方程为:.

 

[选修4-5:不等式选讲](10分)

23.(2018•新课标Ⅰ)已知f(x)=|x+1|﹣|ax﹣1|.

(1)当a=1时,求不等式f(x)>1的解集;

(2)若x∈(0,1)时不等式f(x)>x成立,求a的取值范围.

【分析】(1)去绝对值,化为分段函数,即可求出不等式的解集,

(2)当x∈(0,1)时不等式f(x)>x成立,转化为即|ax﹣1|<1,即0<ax<2,转化为a<,且a>0,即可求出a的范围.

【解答】解:(1)当a=1时,f(x)=|x+1|﹣|x﹣1|=,

由f(x)>1,

∴或,

解得x>,

故不等式f(x)>1的解集为(,+∞),

(2)当x∈(0,1)时不等式f(x)>x成立,

∴|x+1|﹣|ax﹣1|﹣x>0,

即x+1﹣|ax﹣1|﹣x>0,

即|ax﹣1|<1,

∴﹣1<ax﹣1<1,

∴0<ax<2,

∵x∈(0,1),

∴a>0,

∴0<x<,

∴a<

∵>2,

∴0<a≤2,

故a的取值范围为(0,2].

 下载本文

显示全文
专题