视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
2018年高考真题汇编(函数与导数)
2025-09-30 22:47:14 责编:小OO
文档
函数与导数

1.【2018年浙江卷】函数y=sin2x的图象可能是

A.     B. 

C.     D. 

【答案】D

点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复.

2.【2018年理天津卷】已知,,,则a,b,c的大小关系为

A.     B.     C.     D. 

【答案】D

【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果.

详解:由题意结合对数函数的性质可知:,,,

据此可得:.本题选择D选项.

点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.

3.【2018年理新课标I卷】已知函数 .若g(x)存在2个零点,则a的取值范围是

A. [–1,0)    B. [0,+∞)    C. [–1,+∞)    D. [1,+∞)

【答案】C

详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.

点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果.

4.【2018年理新课标I卷】设函数,若为奇函数,则曲线在点处的切线方程为

A.     B.     C.     D. 

【答案】D

点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果.

5.【2018年全国卷Ⅲ理】设,,则

A.     B.   C.     D. 

【答案】B

【解析】分析:求出,得到的范围,进而可得结果。

详解:.,,,,即,又,即,故选B.

点睛:本题主要考查对数的运算和不等式,属于中档题。

6.【2018年理数全国卷II】已知是定义域为的奇函数,满足.若,则 

A.     B. 0    C. 2    D. 50

【答案】C

点睛:函数的奇偶性与周期性相结合的问题多考查求值问题,常利用奇偶性及周期性进行变换,将所求函数值的自变量转化到已知解析式的函数定义域内求解.

7.【2018年理数全国卷II】函数的图像大致为

A. A    B. B    C. C    D. D

【答案】B

【解析】分析:通过研究函数奇偶性以及单调性,确定函数图像.

详解:为奇函数,舍去A,舍去D;

,所以舍去C;因此选B.

点睛:有关函数图象识别问题的常见题型及解题思路(1)由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;②由函数的单调性,判断图象的变化趋势;③由函数的奇偶性,判断图象的对称性;④由函数的周期性,判断图象的循环往复. 

8.【2018年浙江卷】已知λ∈R,函数f(x)=,当λ=2时,不等式f(x)<0的解集是___________.若函数f(x)恰有2个零点,则λ的取值范围是___________.

【答案】  (1,4)   

当时,,此时,即在上有两个零点;当时,,由在上只能有一个零点得.综上,的取值范围为.

点睛:已知函数有零点求参数取值范围常用的方法和思路:

(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;

(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;

(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.

9.【2018年浙江卷】我国古代数学著作《张邱建算经》中记载百鸡问题:“今有鸡翁一,值钱五;鸡母一,值钱三;鸡雏三,值钱一。凡百钱,买鸡百只,问鸡翁、母、雏各几何?”设鸡翁,鸡母,鸡雏个数分别为,,,则当时,___________,___________.

【答案】  8  11

【解析】分析:将z代入解方程组可得x,y值.

详解:

点睛:实际问题数学化,利用所学的知识将陌生的性质转化为我们熟悉的性质,是解决这类问题的突破口.

10.【2018年理数天津卷】已知,函数若关于的方程恰有2个互异的实数解,则的取值范围是______________.

【答案】

,,原问题等价于函数与函数有两个不同的交点,求的取值范围.结合对勾函数和函数图象平移的规律绘制函数的图象,同时绘制函数的图象如图所示,考查临界条件,结合观察可得,实数的取值范围是.

点睛:本题的核心在考查函数的零点问题,函数零点的求解与判断方法包括:

(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.

(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.

(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.

11.【2018年江苏卷】若函数在内有且只有一个零点,则在上的最大值与最小值的和为________.

【答案】–3

点睛:对于函数零点个数问题,可利用函数的单调性、草图确定其中参数取值条件.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.

12.【2018年江苏卷】函数满足,且在区间上, 则的值为________.

【答案】

【解析】分析:先根据函数周期将自变量转化到已知区间,代入对应函数解析式求值,再代入对应函数解析式求结果.

详解:由得函数的周期为4,所以因此

点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围. 

13.【2018年江苏卷】函数的定义域为________.

【答案】[2,+∞)

【解析】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.

详解:要使函数有意义,则,解得,即函数的定义域为.

点睛:求给定函数的定义域往往需转化为解不等式(组)的问题.

14.【2018年理新课标I卷】已知函数,则的最小值是_____________.

【答案】

详解:,所以当时函数单调减,当时函数单调增,从而得到函数的减区间为,函数的增区间为,所以当时,函数取得最小值,此时,所以,故答案是.

点睛:该题考查的是有关应用导数研究函数的最小值问题,在求解的过程中,需要明确相关的函数的求导公式,需要明白导数的符号与函数的单调性的关系,确定出函数的单调增区间和单调减区间,进而求得函数的最小值点,从而求得相应的三角函数值,代入求得函数的最小值.

15.【2018年全国卷Ⅲ理】函数在的零点个数为________.

【答案】

点睛:本题主要考查三角函数的性质和函数的零点,属于基础题。

16.【2018年全国卷Ⅲ理】曲线在点处的切线的斜率为,则________.

【答案】

【解析】分析:求导,利用导数的几何意义计算即可。

详解:,则,所以,故答案为-3.

点睛:本题主要考查导数的计算和导数的几何意义,属于基础题。

17.【2018年理数全国卷II】曲线在点处的切线方程为__________.

【答案】

【解析】分析:先求导数,再根据导数几何意义得切线斜率,最后根据点斜式求切线方程.

详解:

点睛:求曲线的切线要注意“过点P的切线”与“在点P处的切线”的差异,过点P的切线中,点P不一定是切点,点P也不一定在已知曲线上,而在点P处的切线,必以点P为切点.

18.【2018年浙江卷】已知函数f(x)=−lnx.

(Ⅰ)若f(x)在x=x1,x2(x1≠x2)处导数相等,证明:f(x1)+f(x2)>8−8ln2;

(Ⅱ)若a≤3−4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.

【答案】(Ⅰ)见解析  (Ⅱ)见解析

详解:(Ⅰ)函数f(x)的导函数,由得,因为,所以.由基本不等式得.因为,所以.由题意得.设,则,所以

x(0,16)

16(16,+∞)

-0+
2-4ln2

所以g(x)在[256,+∞)上单调递增,故,即.

(Ⅱ)令m=,n=,则f(m)–km–a>|a|+k–k–a≥0,f(n)–kn–a<≤<0,所以,存在x0∈(m,n)使f(x0)=kx0+a,所以,对于任意的a∈R及k∈(0,+∞),直线y=kx+a与曲线y=f(x)有公共点.由f(x)=kx+a得.设h(x)=,则h′(x)=,其中g(x)=.

由(Ⅰ)可知g(x)≥g(16),又a≤3–4ln2,故–g(x)–1+a≤–g(16)–1+a=–3+4ln2+a≤0,

所以h′(x)≤0,即函数h(x)在(0,+∞)上单调递减,因此方程f(x)–kx–a=0至多1个实根.

综上,当a≤3–4ln2时,对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.

点睛:利用导数证明不等式常见类型及解题策略:(1) 构造差函数.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.

19.【2018年理数天津卷】已知函数,,其中a>1.

(I)求函数的单调区间;

(II)若曲线在点处的切线与曲线在点 处的切线平行,证明;

(III)证明当时,存在直线l,使l是曲线的切线,也是曲线的切线.

【答案】(Ⅰ)单调递减区间,单调递增区间为;(Ⅱ)证明见解析;(Ⅲ)证明见解析.

(III)由题意可得两条切线方程分别为l1:.l2:.则原问题等价于当时,存在,,使得l1和l2重合.转化为当时,关于x1的方程存在实数解,构造函数,令,结合函数的性质可知存在唯一的x0,且x0>0,使得,据此可证得存在实数t,使得,则题中的结论成立.

详解:(I)由已知,,有.

令,解得x=0.

由a>1,可知当x变化时,,的变化情况如下表:

x0
0+
极小值
所以函数的单调递减区间,单调递增区间为.

(III)曲线在点处的切线l1:.

曲线在点处的切线l2:.

要证明当时,存在直线l,使l是曲线的切线,也是曲线的切线,

只需证明当时,存在,,使得l1和l2重合.

即只需证明当时,方程组有解,

由①得,代入②,得.   ③

因此,只需证明当时,关于x1的方程③存在实数解.

故存在唯一的x0,且x0>0,使得,即.

由此可得在上单调递增,在上单调递减. 

在处取得极大值.因为,故,

所以.

下面证明存在实数t,使得.由(I)可得,当时,

有,所以存在实数t,使得,因此,当时,存在,使得.

所以,当时,存在直线l,使l是曲线的切线,也是曲线的切线.

点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出 ,本专题在高考中的命题方向及命题角度  从高考来看,对导数的应用的考查主要从以下几个角度进行: (1)考查导数的几何意义,往往与解析几何、微积分相联系. (2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数. (3)利用导数求函数的最值(极值),解决生活中的优化问题. (4)考查数形结合思想的应用.

20.【2018年理北京卷】设函数=[].

(Ⅰ)若曲线y= f(x)在点(1,)处的切线与轴平行,求a;

(Ⅱ)若在x=2处取得极小值,求a的取值范围.

【答案】(1) a的值为1  (2) a的取值范围是(,+∞)

(Ⅱ)由(Ⅰ)得f ′(x)=[ax2–(2a+1)x+2]ex=(ax–1)(x–2)ex.

若a>,则当x∈(,2)时,f ′(x)<0;当x∈(2,+∞)时,f ′(x)>0.所以f (x)<0在x=2处取得极小值.

若a≤,则当x∈(0,2)时,x–2<0,ax–1≤x–1<0,所以f ′(x)>0.所以2不是f (x)的极小值点.

综上可知,a的取值范围是(,+∞).

点睛:利用导数的几何意题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.

21.【2018年江苏卷】记分别为函数的导函数.若存在,满足且,则称为函数与的一个“S点”.

(1)证明:函数与不存在“S点”;

(2)若函数与存在“S点”,求实数a的值;

(3)已知函数,.对任意,判断是否存在,使函数与在区间内存在“S点”,并说明理由.

【答案】(1)证明见解析(2)a的值为(3)对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”.

详解:解:(1)函数f(x)=x,g(x)=x2+2x-2,则f′(x)=1,g′(x)=2x+2.

由f(x)=g(x)且f′(x)= g′(x),得,此方程组无解,

因此,f(x)与g(x)不存在“S”点.

(2)函数,,则.

设x0为f(x)与g(x)的“S”点,由f(x0)与g(x0)且f′(x0)与g′(x0),得

,即,(*)

得,即,则.当时,满足方程组(*),即为f(x)与g(x)的“S”点.因此,a的值为.

(3)对任意a>0,设.因为,且h(x)的图象是不间断的,所以存在∈(0,1),使得,令,则b>0.

函数,则.

由f(x)与g(x)且f′(x)与g′(x),得

,即(**)

此时,满足方程组(**),即是函数f(x)与g(x)在区间(0,1)内的一个“S点”.

因此,对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”.

点睛:涉及函数的零点问题、方程解的个数问题、函数图象交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.

22.【2018年江苏卷】某农场有一块农田,如图所示,它的边界由圆O的一段圆弧(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为,要求均在线段上,均在圆弧上.设OC与MN所成的角为.

(1)用分别表示矩形和的面积,并确定的取值范围;

(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为.求当为何值时,能使甲、乙两种蔬菜的年总产值最大.

【答案】(1)矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为

1600(cosθ–sinθcosθ),sinθ的取值范围是[,1).

(2)当θ=时,能使甲、乙两种蔬菜的年总产值最大

【解析】分析:(1)先根据条件求矩形长与宽,三角形的底与高,再根据矩形面积公式以及三角形面积公式得结果,最后根据实际意义确定的取值范围;(2)根据条件列函数关系式,利用导数求极值点,再根据单调性确定函数最值取法.

详解:

当θ∈[θ0,)时,才能作出满足条件的矩形ABCD,所以sinθ的取值范围是[,1).

答:矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为

1600(cosθ–sinθcosθ),sinθ的取值范围是[,1).

(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,

设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k(k>0),

则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ–sinθcosθ)

=8000k(sinθcosθ+cosθ),θ∈[θ0,).设f(θ)= sinθcosθ+cosθ,θ∈[θ0,),

则.

令,得θ=,当θ∈(θ0,)时,,所以f(θ)为增函数;当θ∈(,)时,,所以f(θ)为减函数,因此,当θ=时,f(θ)取到最大值.

答:当θ=时,能使甲、乙两种蔬菜的年总产值最大.

点睛:解决实际应用题的步骤一般有两步:一是将实际问题转化为数学问题;二是利用数学内部的知识解决问题.

23.【2018年理新课标I卷】已知函数.

(1)讨论的单调性;

(2)若存在两个极值点,证明:.

【答案】(1)当时,在单调递减.,当时, 在单调递减,在单调递增.(2)证明见解析.

详解:(1)的定义域为,.

(i)若,则,当且仅当,时,所以在单调递减.

(ii)若,令得,或.当时,;当时,.所以在单调递减,在单调递增.

点睛:该题考查的是应用导数研究函数的问题,涉及到的知识点有应用导数研究函数的单调性、应用导数研究函数的极值以及极值所满足的条件,在解题的过程中,需要明确导数的符号对单调性的决定性作用,再者就是要先保证函数的生存权,先确定函数的定义域,要对参数进行讨论,还有就是在做题的时候,要时刻关注第一问对第二问的影响,再者就是通过构造新函数来解决问题的思路要明确.

24.【2018年全国卷Ⅲ理】已知函数.

(1)若,证明:当时,;当时,;

(2)若是的极大值点,求.

【答案】(1)见解析(2)

【解析】分析:(1)求导,利用函数单调性证明即可。

(2)分类讨论和,构造函数,讨论的性质即可得到a的范围。

详解:(1)当时,,.

设函数,则.

当时,;当时,.故当时,,且仅当时,,从而,且仅当时,.

所以在单调递增.又,故当时,;当时,.

(2)(i)若,由(1)知,当时,,这与是的极大值点矛盾.

点睛:本题考查函数与导数的综合应用,利用函数的单调性求出最值证明不等式,第二问分类讨论和,当时构造函数时关键,讨论函数的性质,本题难度较大。

25.【2018年理数全国卷II】已知函数.

(1)若,证明:当时,;

(2)若在只有一个零点,求.

【答案】(1)见解析(2)

详解:(1)当时,等价于.

设函数,则.

当时,,所以在单调递减.

而,故当时,,即.

(2)设函数.

在只有一个零点当且仅当在只有一个零点.

(i)当时,,没有零点;

(ii)当时,.

当时,;当时,.

所以在单调递减,在单调递增.

故是在的最小值.

①若,即,在没有零点;

②若,即,在只有一个零点;

③若,即,由于,所以在有一个零点,

由(1)知,当时,,所以.

故在有一个零点,因此在有两个零点.

综上,在只有一个零点时,.

点睛:利用函数零点的情况求参数值或取值范围的方法

(1)利用零点存在的判定定理构建不等式求解.

(2)分离参数后转化为函数的值域(最值)问题求解.

(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.

优质模拟试题

26.【四川省成都市2018届模拟理】设函数,若存在区间,使在上的值域为,则的取值范围是(   )

A.     B.     C.     D. 

【答案】C

因为,所以在单调递增,因为在上的值域为,所以,所以方程在上有两解,作出与直线的函数的图象,则两图象有两个交点,若直线过点,则,

若直线与的图象相切,设切点为,则,解得,

综上所述,所以实数的取值范围是,故选C.

点睛:本题主要考查了利用导数求解函数的单调性及其应用,导数的几何意义,函数的零点与函数的图象之间的关系等知识点的综合运用,其中把函数的值域转化为着方程有两个实数根,进而转化为两函数的图象由两个交点是解答的关键,重考查了分析问题和解答问题的能力,以及推理与论证能力.

27.【辽宁省葫芦岛市2018年二模理】已知函数,在区间上任取三个数均存在以为边长的三角形,则的取值范围是(   )

A.     B.     C.     D. 

【答案】D

由此能求出的取值范围.

详解:∵函数,,由 得x=1,  时, 时, ,∴∵在区间上任取三个数均存在以为边长的三角形,,①

联立①②,得 .故选D.

点睛:本题考查实数的求值范围的求法,是中档题,解题时要认真审题,注意导数性质的合理运用.

28.【河南省洛阳市2018届三模理】已知函数与的图像有4个不同的交点,则实数的取值范围是(  )

A.     B.     C.     D. 

【答案】C

【解析】分析:函数与的图像有4个不同的交点,即有4个不同的实根,由可得,讨论其性质可得的取值范围.

详解:函数,此时 此时,函数在上单调递减,在上单调递增,由图像可知,在上单调递减,在上单调递增,且当时,函数函数与的图像有4个不同的交点,则实数的取值范围为.

故选C.

点睛:本题考查利用导数眼函数零点问题,注意数形结合思想的应用,解题时注意函数的定义域,属难题.

29.【辽宁省葫芦岛市2018年二模理】已知函数,其中常数.

(1)当时,讨论的单调性;

(2)当时,是否存在整数使得关于的不等式在区间内有解?若存在,求出整数的最小值;若不存在,请说明理由.

参考数据:,.

【答案】(1) f(x)在(0,1)↑,(1,+∞)↓(2) −1

 

(2)当 时,设, ,  在 ,且 

可知在(0,)内,∃唯一x0∈(,),使得lnx0=x0−2

并且F(x)在(0,x0)↓,(x0,e)↑,(e,+∞)↓当x∈(0,e)时,F(x)min =e3(x−x0)

因∃∈(0,e),使2m≥F(x)成立,故需2m≥F(x)min=e3(x−x0)

由此可求m的最小整数值.

详解:(1) 求导,设 明显g(x)在(0,+∞)↓,且g(1)=0,故f(x)在(0,1)↑,(1,+∞)↓

当 时,设, ,  在 ,且

注意F′()=−3<0,F′()=e3(1−ln2−e−2)≈0.1e3>0

故在(0,)内,∃唯一x0∈(,),使得lnx0=x0−2

并且F(x)在(0,x0)↓,(x0,e)↑,(e,+∞)↓

当x∈(0,e)时,F(x)min =F(x0)=e3(x0lnx0−x+x0)=e3(x−x0)

因∃∈(0,e),使2m≥F(x)成立,故需2m≥F(x)min=e3(x−x0)

当x0∈(,)时,F(x)min=e3(x−x0)∈(−,−e)≈(−3.32,−2.51)

因2m为偶数,故需2m≥−2⇒m≥−1,即m的最小整数值为−1

点睛:本题考查导数知识的综合运用,考查函数的单调性与最值,考查分类讨论的数学思想,属于难题.

30.【湖南省益阳市理数5月统考】已知函数.

(1)讨论的单调性;

(2)设,是的两个零点,证明:.

【答案】(1)见解析(2)见解析

详解:(1)解:,当时,,则在上单调递增.

当时,,得,则的单调递增区间为.

令,得,得的单调递减区间为.

(2)证明:由得,设,则,由得;由,得.

故.当时,;当时,.

不妨设,则,.等价于,∵,且在上单调递增,∴要证,只需证,即,

即证.设,,

则,令,则,∵,∴,

∴在上单调递减,即在上单调递减,∴,∴在上单调递增,

∴,∴,从而得证.

点睛:本题主要考查利用导数判断函数的单调性,以及函数零点个数的判断和函数性质的综合应用,考查了分类讨论思想,综合性较强、难度较大,第二问构造函数,不妨设,由已知将问题转化为只需证是关键。下载本文

显示全文
专题