一、直角三角形的边角关系
1.某地是国家AAAA 级旅游景区,以“奇山奇水奇石景,古賨古洞古部落”享誉巴渠,被誉为 “小九寨”.端坐在观音崖旁的一块奇石似一只“啸天犬”,昂首向天,望穿古今.一个周末,某数学兴趣小组的几名同学想测出“啸天犬”上嘴尖与头顶的距离.他们把蹲着的“啸天犬”抽象成四边形ABCD ,想法测出了尾部C 看头顶B 的仰角为40,从前脚落地点D 看上嘴尖A 的仰角刚好60,5CB m =, 2.7CD m =.景区管理员告诉同学们,上嘴尖到地面的距离是3m .于是,他们很快就算出了AB 的长.你也算算?(结果精确到0.1m .参考数据:400.400.77400.84sin cos tan ︒≈︒≈︒≈,.2 1.41,3 1.73≈≈)
【答案】AB 的长约为0.6m .
【解析】
【分析】
作BF CE ⊥于F ,根据正弦的定义求出BF ,利用余弦的定义求出CF ,利用正切的定义求出DE ,结合图形计算即可.
【详解】
解:作BF CE ⊥于F ,
在Rt BFC ∆中, 3.20BF BC sin BCF ⋅∠≈=,
3.85CF BC cos BCF ⋅∠≈=,
在Rt ADE ∆E 中,33 1.73tan 3
AB DE ADE ===≈∠, 0.200.58BH BF HF AH EF CD DE CF ∴+=﹣=,==﹣=
由勾股定理得,22BH AH 0.6(m)AB =+≈,
答:AB 的长约为0.6m .
考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.
2.如图,山坡上有一棵树AB,树底部B点到山脚C点的距离BC为63米,山坡的坡角为30°.小宁在山脚的平地F处测量这棵树的高,点C到测角仪EF的水平距离CF=1米,从E处测得树顶部A的仰角为45°,树底部B的仰角为20°,求树AB的高度.(参考数
值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)
【答案】6.4米
【解析】
解:∵底部B点到山脚C点的距离BC为6 3 米,山坡的坡角为30°.
∴DC=BC•cos30°=3
==米,
639
2
∵CF=1米,
∴DC=9+1=10米,
∴GE=10米,
∵∠AEG=45°,
∴AG=EG=10米,
在直角三角形BGF中,
BG=GF•tan20°=10×0.36=3.6米,
∴AB=AG-BG=10-3.6=6.4米,
答:树高约为6.4米
首先在直角三角形BDC中求得DC的长,然后求得DF的长,进而求得GF的长,然后在直角三角形BGF中即可求得BG的长,从而求得树高
3.已知Rt△ABC中,∠ACB=90°,点D、E分别在BC、AC边上,连结BE、AD交于点P,设AC=kBD,CD=kAE,k为常数,试探究∠APE的度数:
(1)如图1,若k=1,则∠APE的度数为;
(2)如图2,若31)中的结论是否成立?若成立,请说明理由;若不成立,求出∠APE的度数.
(3)如图3,若3D、E分别在CB、CA的延长线上,(2)中的结论是否成立,请说明理由.【答案】(1)45°;(2)(1)中结论不成立,理由见解析;(3)(2)中结论成立,理由见解析.
【解析】
分析:(1)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出
△FAE≌△ACD,得出EF=AD=BF,再判断出∠EFB=90°,即可得出结论;
(2)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出
△FAE∽△ACD,再判断出∠EFB=90°,即可得出结论;
(3)先判断出四边形ADBF是平行四边形,得出BD=AF,BF=AD,进而判断出
△ACD∽△HEA,再判断出∠EFB=90°,即可得出结论;
详解:(1)如图1,过点A作AF∥CB,过点B作BF∥AD相交于F,连接EF,
∴∠FBE=∠APE,∠FAC=∠C=90°,四边形ADBF是平行四边形,
∴BD=AF,BF=AD.
∵AC=BD,CD=AE,
∴AF=AC.
∵∠FAC=∠C=90°,
∴△FAE≌△ACD,
∴EF=AD=BF,∠FEA=∠ADC.
∵∠ADC+∠CAD=90°,
∴∠FEA+∠CAD=90°=∠EHD.
∵AD∥BF,
∴∠EFB=90°.
∵EF=BF,
∴∠FBE=45°,
∴∠APE=45°.
(2)(1)中结论不成立,理由如下:
如图2,过点A 作AF ∥CB ,过点B 作BF ∥AD 相交于F ,连接EF ,
∴∠FBE=∠APE ,∠FAC=∠C=90°,四边形ADBF 是平行四边形,
∴BD=AF ,BF=AD .
∵AC=3BD ,CD=3AE , ∴
3AC CD BD AE
==. ∵BD=AF , ∴3AC CD AF AE
==. ∵∠FAC=∠C=90°,
∴△FAE ∽△ACD , ∴
3AC AD BF AF EF EF
===,∠FEA=∠ADC . ∵∠ADC+∠CAD=90°,
∴∠FEA+∠CAD=90°=∠EMD .
∵AD ∥BF ,
∴∠EFB=90°. 在Rt △EFB 中,tan ∠FBE=
33
EF BF =, ∴∠FBE=30°,
∴∠APE=30°,
(3)(2)中结论成立,如图3,作EH ∥CD ,DH ∥BE ,EH ,DH 相交于H ,连接AH ,
∴∠APE=∠ADH ,∠HEC=∠C=90°,四边形EBDH 是平行四边形,
∴BE=DH ,EH=BD .
∵3BD ,3AE ,
∴3AC CD BD AE ==. ∵∠HEA=∠C=90°,
∴△ACD ∽△HEA , ∴
3AD AC AH EH
==,∠ADC=∠HAE . ∵∠CAD+∠ADC=90°,
∴∠HAE+∠CAD=90°,
∴∠HAD=90°. 在Rt △DAH 中,tan ∠ADH=3AH AD =, ∴∠ADH=30°,
∴∠APE=30°.
点睛:此题是三角形综合题,主要考查了全等三角形的判定和性质,相似三角形的判定和性质,平行四边形的判定和性质,构造全等三角形和相似三角形的判定和性质.
4.如图,在⊙O 的内接三角形ABC 中,∠ACB =90°,AC =2BC ,过C 作AB 的垂线l 交⊙O 于另一点D ,垂足为E.设P 是
上异于A ,C 的一个动点,射线AP 交l 于点F ,连接PC 与PD ,PD 交AB 于点G.
(1)求证:△PAC ∽△PDF ;
(2)若AB =5,求PD 的长;
(3)在点P 运动过程中,设
=x ,tan ∠AFD =y ,求y 与x 之间的函数关系式.(不要求写出x 的取值范围)
【答案】(1)证明见解析;(2)
;(3).
【解析】 试题分析:(1)应用圆周角定理证明∠APD =∠FPC ,得到∠APC =∠FPD ,又由∠PAC =∠PDC ,即可证明结论.
(2)由AC=2BC ,设,应用勾股定理即可求得BC ,AC 的长,则由AC=2BC 得
,由△ACE ∽△ABC 可求得AE ,CE 的长,由
可知△APB 是等腰直角三角形,从而可求得PA 的长,由△AEF 是等腰直角三角形求得EF=AE=4,从而求得DF 的长,
(3)连接BP,BD,AD,根据圆的对称性,可得,由角的转换可得
,由△AGP∽△DGB可得,由△AGD∽△PGB可得,两式相乘可得结果.
试题解析:(1)由APCB内接于圆O,得∠FPC=∠B,
又∵∠B=∠ACE=90°-∠BCE,∠ACE=∠APD,∴∠APD=∠FPC.
∴∠APD+∠DPC=∠FPC+∠DPC,即∠APC=∠FPD.
又∵∠PAC=∠PDC,∴△PAC∽△PDF.
(2)连接BP,设,∵∠ACB=90°,AB=5,
∴.∴.
∵△ACE∽△ABC,∴,即. ∴.
∵AB⊥CD,∴.
如图,连接BP,
∵,∴△APB是等腰直角三角形. ∴∠PAB=45°,.
∴△AEF是等腰直角三角形. ∴EF=AE=4. ∴DF=6.
由(1)△PAC∽△PDF得,即.
∴PD的长为.
(3)如图,连接BP,BD,AD,
∵AC=2BC,∴根据圆的对称性,得AD=2DB,即.
∵AB⊥CD,BP⊥AE,∴∠ABP=∠AFD.
∵,∴.
∵△AGP∽△DGB,∴.
∵△AGD∽△PGB,∴.
∴,即.
∵,∴.
∴与之间的函数关系式为.
考点:1.单动点问题;2.圆周角定理;3.相似三角形的判定和性质;4.勾股定理;5.等腰直角三角形的判定和性质;6.垂径定理;7.锐角三角函数定义;8.由实际问题列函数关系式.
5.问题探究:
(一)新知学习:
圆内接四边形的判断定理:如果四边形对角互补,那么这个四边形内接于圆(即如果四边形EFGH的对角互补,那么四边形EFGH的四个顶点E、F、G、H都在同个圆上).
(二)问题解决:
已知⊙O的半径为2,AB,CD是⊙O的直径.P是上任意一点,过点P分别作AB,CD 的垂线,垂足分别为N,M.
(1)若直径AB⊥CD,对于上任意一点P(不与B、C重合)(如图一),证明四边形PMON内接于圆,并求此圆直径的长;
(2)若直径AB⊥CD,在点P(不与B、C重合)从B运动到C的过程汇总,证明MN的长为定值,并求其定值;
(3)若直径AB与CD相交成120°角.
①当点P运动到的中点P1时(如图二),求MN的长;
②当点P(不与B、C重合)从B运动到C的过程中(如图三),证明MN的长为定值.(4)试问当直径AB与CD相交成多少度角时,MN的长取最大值,并写出其最大值.【答案】(1)证明见解析,直径OP=2;
(2)证明见解析,MN的长为定值,该定值为2;
(3)①MN=;②证明见解析;
(4)MN取得最大值2.
【解析】
试题分析:(1)如图一,易证∠PMO+∠PNO=180°,从而可得四边形PMON内接于圆,直径OP=2;
(2)如图一,易证四边形PMON是矩形,则有MN=OP=2,问题得以解决;
(3)①如图二,根据等弧所对的圆心角相等可得∠COP1=∠BOP1=60°,根据圆内接四边形的对角互补可得∠MP1N=60°.根据角平分线的性质可得P1M=P1N,从而得到△P1MN是等边三角形,则有MN=P1M.然后在Rt△P1MO运用三角函数就可解决问题;②设四边形PMON的外接圆为⊙O′,连接NO′并延长,交⊙O′于点Q,连接QM,如图三,根据圆周角定理可得∠QMN=90°,∠MQN=∠MPN=60°,在Rt△QMN中运用三角函数可得:
MN=QN•sin∠MQN,从而可得MN=OP•sin∠MQN,由此即可解决问题;
(4)由(3)②中已得结论MN=OP•sin∠MQN可知,当∠MQN=90°时,MN最大,问题得以解决.
试题解析:(1)如图一,
∵PM⊥OC,PN⊥OB,∴∠PMO=∠PNO=90°,∴∠PMO+∠PNO=180°,∴四边形PMON内接于圆,直径OP=2;
(2)如图一,
∵AB⊥OC,即∠BOC=90°,∴∠BOC=∠PMO=∠PNO=90°,∴四边形PMON是矩形,
∴MN=OP=2,∴MN的长为定值,该定值为2;
(3)①如图二,∵P1是的中点,∠BOC=120°,∴∠COP1=∠BOP1=60°,∠MP1N=60°,∵P1M⊥OC,
P1N⊥OB,∴P1M=P1N,∴△P1MN是等边三角形,∴MN=P1M.
∵P1M=OP1•sin∠MOP1=2×sin60°=,∴MN=;
②设四边形PMON的外接圆为⊙O′,连接NO′并延长,
交⊙O′于点Q,连接QM,如图三,
则有∠QMN=90°,∠MQN=∠MPN=60°,
在Rt△QMN中,sin∠MQN=,∴MN=QN•sin∠MQN,
∴MN=OP•sin∠MQN=2×sin60°=2×=,∴MN是定值.
(4)由(3)②得MN=OP•sin∠MQN=2sin∠MQN.
当直径AB与CD相交成90°角时,∠MQN=180°﹣90°=90°,MN取得最大值2.
考点:圆的综合题.
6.如图,将一副直角三角形拼放在一起得到四边形ABCD,其中∠BAC=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F 点.若AB=6cm.
(1)AE的长为 cm;
(2)试在线段AC上确定一点P,使得DP+EP的值最小,并求出这个最小值;
(3)求点D′到BC的距离.【答案】(1);(2)12cm;(3)cm.
【解析】
试题分析:(1)首先利用勾股定理得出AC的长,进而求出CD的长,利用直角三角形斜边上的中线等于斜边的一半进而得出答案:
∵∠BAC=45°,∠B=90°,∴AB=BC=6cm,∴AC=12cm.
∵∠ACD=30°,∠DAC=90°,AC=12cm,∴(cm).
∵点E为CD边上的中点,∴AE=DC=cm.
(2)首先得出△ADE为等边三角形,进而求出点E,D′关于直线AC对称,连接DD′交AC 于点P,根据轴对称的性质,此时DP+EP值为最小,进而得出答案.
(3)连接CD′,BD′,过点D′作D′G⊥BC于点G,进而得出△ABD′≌△CBD′(SSS),则∠D′BG=45°,D′G=GB,进而利用勾股定理求出点D′到BC边的距离.
试题解析:解:(1).
(2)∵Rt△ADC中,∠ACD=30°,∴∠ADC=60°,
∵E为CD边上的中点,∴DE=AE.∴△ADE为等边三角形.
∵将△ADE沿AE所在直线翻折得△AD′E,∴△AD′E为等边三角形,∠AED′=60°.
∵∠EAC=∠DAC﹣∠EAD=30°,∴∠EFA=90°,即AC所在的直线垂直平分线段ED′.
∴点E,D′关于直线AC对称.
如答图1,连接DD′交AC于点P,∴此时DP+EP值为最小,且DP+EP=DD′.
∵△ADE是等边三角形,AD=AE=,
∴,即DP+EP最小值为12cm.
(3)如答图2,连接CD′,BD′,过点D′作D′G⊥BC于点G,
∵AC垂直平分线ED′,∴AE=AD′,CE=CD′,
∵AE=EC,∴AD′=CD′=.在△ABD′和△CBD′中,∵,∴△ABD′≌△CBD′
(SSS).∴∠D′BG=∠D′BC=45°.∴D′G=GB.
设D′G长为xcm,则CG长为cm,
在Rt△GD′C中,由勾股定理得,
解得:(不合题意舍去).
∴点D′到BC边的距离为cm.
考点:1.翻折和单动点问题;2.勾股定理;3.直角三角形斜边上的中线性质;4.等边三角形三角形的判定和性质;5.轴对称的应用(最短线路问题);6.全等三角形的判定和性质;7.方程思想的应用.
7.如图,某公园内有一座古塔AB,在塔的北面有一栋建筑物,某日上午9时太阳光线与水平面的夹角为32°,此时塔在建筑物的墙上留下了高3米的影子CD.中午12时太阳光线与地面的夹角为45°,此时塔尖A在地面上的影子E与墙角C的距离为15米(B、E、C在一条直线上),求塔AB的高度.(结果精确到0.01米)
参考数据:sin32°≈0.5299,cos32°≈0.8480,tan32°≈0.6249,2 1.4142
.
【答案】塔高AB约为32.99米.
【解析】
【分析】
过点D作DH⊥AB,垂足为点H,设AB=x,则AH=x﹣3,解直角三角形即可得到结论.【详解】
解:过点D作DH⊥AB,垂足为点H.
由题意,得 HB = CD = 3,EC = 15,HD = BC ,∠ABC =∠AHD = 90°,
∠ADH = 32°.
设AB = x ,则 AH = x – 3.
在Rt △ABE 中,由 ∠AEB = 45°,得 tan tan451AB AEB EB ∠=︒==. ∴ EB = AB = x .∴ HD = BC = BE + EC = x + 15.
在Rt △AHD 中,由 ∠AHD = 90°,得 tan AH ADH HD ∠=
. 即得 3tan3215x x -︒=
+. 解得 15tan32332.991tan32x ⋅︒+=≈-︒
. ∴ 塔高AB 约为32.99米.
【点睛】
本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.
8.2018年12月10日,郑州市城乡规划局网站挂出《郑州都市区主城区停车场专项规划》,将停车纳入城市综合交通体系,计划到2030年,在主城区新建停车泊位33.04万个,2019年初,某小区拟修建地下停车库,如图是停车库坡道入口的设计图,其中MN 是水平线,MN ∥AD ,AD ⊥DE ,CF ⊥AB ,垂足分别为D ,F ,坡道AB 的坡度为1:3,DE =3米,点C 在DE 上,CD =0.5米,CD 是限高标志屏的高度(标志牌上写有:限高米),如果进入该车库车辆的高度不能超过线段CF 的长,则该停车库限高多少米?(结果精确到0.1米,参考数据2≈1.41, 3≈1.73)
【答案】该停车库限高约为2.2米.
【解析】
【分析】
据题意得出tan
3
B=,即可得出tan A,在Rt△ADE中,根据勾股定理可求得DE,即可
得出∠1的正切值,再在Rt△CEF中,设EF=x,即可求出x,从而得出CF的长.【详解】
解:由题意得,tan B=
∵MN∥AD,
∴∠A=∠B,
∴tan A,
∵DE⊥AD,
∴在Rt△ADE中,tan A=DE
AD
,
∵DE=3,
又∵DC=0.5,
∴CE=2.5,
∵CF⊥AB,
∴∠FCE+∠CEF=90°,
∵DE⊥AD,
∴∠A+∠CEF=90°,
∴∠A=∠FCE,
∴tan∠FCE=
3
.
在Rt△CEF中,设EF=x,CF x(x>0),CE=2.5,
代入得(5
2
)2=x2+3x2,
解得x=1.25,
∴CF
x≈2.2,
∴该停车库限高约为2.2米.
【点睛】
本题考查了解直角三角形的应用,坡面坡角问题和勾股定理,解题的关键是坡度等于坡角的正切值.
9.如图,直线y=1
2
x+2与x轴交于点A,与y轴交于点B,抛物线y=﹣
1
2
x2+bx+c经过
A、B两点,与x轴的另一个交点为C.(1)求抛物线的解析式;
(2)根据图象,直接写出满足12x +2≥﹣12
x 2+bx +c 的x 的取值范围; (3)设点D 为该抛物线上的一点、连结AD ,若∠DAC =∠CBO ,求点D 的坐标.
【答案】(1)213222y x x =-
-+;(2)当x ≥0或x ≤﹣4;(3)D 点坐标为(0,2)或(2,﹣3).
【解析】
【分析】
(1)由直线y =
12
x +2求得A 、B 的坐标,然后根据待定系数法即可求得抛物线的解析式; (2)观察图象,找出直线在抛物线上方的x 的取值范围;
(3)如图,过D 点作x 轴的垂线,交x 轴于点E ,先求出CO =1,AO =4,再由∠DAC =∠CBO ,得出tan ∠DAC =tan ∠CBO ,从而有,
DE CO AE BO =,最后分类讨论确定点D 的坐标. 【详解】
解:(1)由y =12
x +2可得: 当x =0时,y =2;当y =0时,x =﹣4,
∴A (﹣4,0),B (0,2),
把A 、B 的坐标代入y =﹣12x 2+bx +c 得: 322
b c ⎧=-⎪⎨⎪=⎩, ∴抛物线的解析式为:213222
y x x =-
-+ (2)当x ≥0或x ≤﹣4时,12x +2≥﹣12x 2+bx +c (3)如图,过D 点作x 轴的垂线,交x 轴于点E ,
由213222
y x x =
-+令y =0, 解得:x 1=1,x 2=﹣4,
∴CO =1,AO =4,
设点D 的坐标为(m ,213222m m --+), ∵∠DAC =∠CBO , ∴tan ∠DAC =tan ∠CBO ,
∴在Rt △ADE 和Rt △BOC 中有DE CO AE BO
=, 当D 在x 轴上方时,213212242
--+=+m m m 解得:m 1=0,m 2=﹣4(不合题意,舍去),
∴点D 的坐标为(0,2).
当D 在x 轴下方时,213(2)12242
---+=+m m m 解得:m 1=2,m 2=﹣4(不合题意,舍去),
∴点D 的坐标为(2,﹣3),
故满足条件的D 点坐标为(0,2)或(2,﹣3).
【点睛】
本题是二次函数综合题型,主要考查了一次函数图象上点的坐标特征,待定系数法求二次函数解析式.解题的关键是能够熟练掌握一次函数和二次函数的有关知识解决问题,分类讨论是第(3)题的难点.
10.在正方形ABCD 中,AC 是一条对角线,点E 是边BC 上的一点(不与点C 重合),连接AE ,将△ABE 沿BC 方向平移,使点B 与点C 重合,得到△DCF ,过点E 作EG ⊥AC 于点G ,连接DG ,FG .
(1)如图,①依题意补全图;②判断线段FG 与DG 之间的数量关系与位置关系,并证明;
(2)已知正方形的边长为6,当∠AGD =60°时,求BE 的长.
)BE=
【解析】
【分析】
(1)①补全图形即可,
②连接BG,由SAS证明△BEG≌△GCF得出BG=GF,由正方形的对称性质得出BG=DG,得出FG=DG,在证出∠DGF=90°,得出FG⊥DG即可,(2)过点D作DH⊥AC,交AC于
点H.由等腰直角三角形的性质得出DH=AH=
FG=DG=
2GH=
,得出DF
DG=
Rt△DCF中,由勾股定理得出CF=
得出结果.
【详解】
解:(1)①补全图形如图1所示,
②FG=DG,FG⊥DG,理由如下,
连接BG,如图2所示,
∵四边形ABCD是正方形,
∴∠ACB=45°,
∵EG⊥AC,
∴∠EGC=90°,
∴△CEG是等腰直角三角形,EG=GC,∴∠GEC=∠GCE=45°,
∴∠BEG=∠GCF=135°,
由平移的性质得:BE=CF,
在△BEG和△GCF中,
BE CF
BEG GCF EG CG
=
⎧
⎪
∠=∠
⎨
⎪=
⎩
,
∴△BEG≌△GCF(SAS),
∴BG=GF,
∵G在正方形ABCD对角线上,
∴BG=DG,
∴FG=DG,
∵∠CGF=∠BGE,∠BGE+∠AGB=90°,∴∠CGF+∠AGB=90°,
∴∠AGD+∠CGF=90°,
∴∠DGF=90°,
∴FG⊥DG.
(2)过点D 作DH ⊥AC ,交AC 于点H .如图3所示,
在Rt △ADG 中,
∵∠DAC =45°,
∴DH =AH =32, 在Rt △DHG 中,∵∠AGD =60°,
∴GH =3DH
=32
3=6,
∴DG =2GH =26,
∴DF =2DG =43,
在Rt △DCF 中,CF =
()22436-=23,
∴BE =CF =23.
【点睛】
本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的性质、勾股定理、解直角三角形的应用等知识;本题综合性强,证明三角形全等是解题的关键.
11.已知Rt △ABC ,∠BAC =90°,点D 是BC 中点,AD =AC ,BC =3A ,D 两点作⊙O ,交AB 于点E ,
(1)求弦AD 的长;
(2)如图1,当圆心O 在AB 上且点M 是⊙O 上一动点,连接DM 交AB 于点N ,求当ON 等于多少时,三点D 、E 、M 组成的三角形是等腰三角形?
(3)如图2,当圆心O 不在AB 上且动圆⊙O 与DB 相交于点Q 时,过D 作DH ⊥AB (垂足为H )并交⊙O 于点P ,问:当⊙O 变动时DP ﹣DQ 的值变不变?若不变,请求出其值;
【答案】(1)23
(2)当ON等于13﹣1时,三点D、E、M组成的三角形是等腰三角形
(3)不变,理由见解析
【解析】
【分析】
(1)根据直角三角形斜边上的中线等于斜边的一半即可得到AD的长;
(2)连DE、ME,易得当ED和EM为等腰三角形EDM的两腰,根据垂径定理得推论得OE⊥DM,易得到△ADC为等边三角形,得∠CAD=60°,则∠DAO=30°,∠DON=60°,然后
根据含30°的直角三角形三边的关系得DN=1
2
3
3
;
当MD=ME,DE为底边,作DH⊥AE,由于3∠DAE=30°,得到3,
∠DEA=60°,DE=2,于是OE=DE=2,OH=1,
又∠M=∠DAE=30°,MD=ME,得到∠MDE=75°,则∠ADM=90°-75°=15°,可得到
∠DNO=45°,根据等腰直角三角形的性质得到33;
(3)连AP、AQ,DP⊥AB,得AC∥DP,则∠PDB=∠C=60°,再根据圆周角定理得
∠PAQ=∠PDB,∠AQC=∠P,则∠PAQ=60°,∠CAQ=∠PAD,易证得△AQC≌△APD,得到DP=CQ,则DP-DQ=CQ-DQ=CD,而△ADC为等边三角形,3DP-DQ的值.
【详解】
解:(1)∵∠BAC=90°,点D是BC中点,BC=3
∴AD=1
2
BC=3
(2)连DE、ME,如图,∵DM>DE,
当ED和EM为等腰三角形EDM的两腰,
∴OE⊥DM,
又∵AD=AC,
∴△ADC为等边三角形,
∴∠CAD=60°,
∴∠DAO=30°,
∴∠DON=60°,
在Rt△ADN中,DN=1
2
AD=3,
在Rt△ODN中,ON=
3
3
DN=1,
∴当ON等于1时,三点D、E、M组成的三角形是等腰三角形;
当MD=ME,DE为底边,如图3,作DH⊥AE,
∵AD=23,∠DAE=30°,
∴DH=3,∠DEA=60°,DE=2,
∴△ODE为等边三角形,
∴OE=DE=2,OH=1,
∵∠M=∠DAE=30°,
而MD=ME,
∴∠MDE=75°,
∴∠ADM=90°﹣75°=15°,
∴∠DNO=45°,
∴△NDH为等腰直角三角形,
∴NH=DH=3,
∴ON=3﹣1;
综上所述,当ON等于1或3﹣1时,三点D、E、M组成的三角形是等腰三角形;(3)当⊙O变动时DP﹣DQ的值不变,DP﹣DQ=23.理由如下:
连AP、AQ,如图2,
∵∠C=∠CAD=60°,
而DP⊥AB,
∴AC∥DP,
∴∠PDB=∠C=60°,
又∵∠PAQ=∠PDB,
∴∠PAQ=60°,
∴∠CAQ=∠PAD,
∵AC=AD,∠AQC=∠P,
∴△AQC≌△APD,
∴DP=CQ,
∴DP﹣DQ=CQ﹣DQ=CD=23.
【点睛】
本题考查了垂径定理和圆周角定理:平分弧的直径垂直弧所对的弦;在同圆和等圆中,相等的弧所对的圆周角相等.也考查了等腰三角形的性质以及含30°的直角三角形三边的关系.
12.如图所示,一堤坝的坡角62ABC ∠=︒,坡面长度25AB =米(图为横截面),为了使堤坝更加牢固,一施工队欲改变堤坝的坡面,使得坡面的坡角50ADB ∠=︒,则此时应将坝底向外拓宽多少米?(结果保留到0.01 米)(参考数据:sin620.88︒≈,cos620.47︒≈,tan50 1.20︒≈)
【答案】6.58米
【解析】
试题分析:过A 点作AE ⊥CD 于E .在Rt △ABE 中,根据三角函数可得AE ,BE ,在Rt △ADE 中,根据三角函数可得DE ,再根据DB=DE ﹣BE 即可求解.
试题解析:过A 点作AE ⊥CD 于E . 在Rt △ABE 中,
∠ABE=62°. ∴AE=AB•sin62°=25×0.88=22米,
BE=AB•c os62°=25×0.47=11.75米, 在Rt △ADE 中,∠ADB=50°, ∴DE==18米,
∴DB=DE ﹣BE≈6.58米. 故此时应将坝底向外拓宽大约6.58米.
考点:解直角三角形的应用-坡度坡角问题.下载本文