视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
测量刚体的转动惯量实验
2025-09-30 22:43:07 责编:小OO
文档
大学物理仿真实验报告测量刚体的转动惯量实验

许瑨

钱学森21班| 2120405021测量刚体的转动惯量实验

实验目的

1.用实验方法验证刚体转动定律,并求其转动惯量;

2.观察刚体的转动惯量与质量分布的关系

3.学习作图的曲线改直法,并由作图法处理实验数据。

实验原理

1.刚体的转动定律

具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:

M = Iβ(1)

利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。2.应用转动定律求转动惯量

图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。刚体将在砝码的拖动下绕竖直轴转动。

设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at2/2。刚体受到张力的力矩为T r和轴摩擦力力矩M f。由转动定律可得到刚体的转动运动方程:T r - M f = Iβ。绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:

m(g - a)r - M f = 2hI/rt2(2)M f与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<mgr = 2hI/ rt2(3)

式中r、h、t可直接测量到,m是试验中任意选定的。因此可根据(3)用实验的方法求得转动惯量I。

3.验证转动定律,求转动惯量

从(3)出发,考虑用以下两种方法:

A.作m – 1/t2图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:

M = K1/ t2(4)

式中K1 = 2hI/ gr2为常量。上式表明:所用砝码的质量与下落时间t的平方成反比。实验中选用一系列的砝码质量,可测得一组m与1/t2的数据,将其在直角坐标系上作图,应是直线。即若所作的图是直线,便验证了转动定律。

从m – 1/t2图中测得斜率K1,并用已知的h、r、g值,由K1 = 2hI/ gr2求得刚体的I。

B.作r – 1/t图法:配重物的位置不变,即选定一个刚体,取砝码m和下落高度h 为固定值。将式(3)写为:

r = K2/ t (5)

式中K2 = (2hI/ mg)1/2是常量。上式表明r与1/t成正比关系。实验中换用不同的塔轮半径r,测得同一质量的砝码下落时间t,用所得一组数据作r-1/t图,应是直线。即若所作图是直线,便验证了转动定律。

从r-1/t图上测得斜率,并用已知的m、h、g值,由K2 = (2hI/ mg)1/2求出刚体的I。

实验仪器

刚体转动仪,滑轮,秒表,砝码实验内容

1.调节实验装置:调节转轴垂直于水平面

调节滑轮高度,使拉线与塔轮轴垂直,并与滑轮面共面。选定砝码下落起点到地面的高度h,并保持不变。

2.观察刚体质量分布对转动惯量的影响

取塔轮半径为3.00cm,砝码质量为20g,保持高度h不变,将配重物逐次取三种不同的位置,分别测量砝码下落的时间,分析下落时间与转动惯量的关系。本项实验只作定性说明,不作数据计算。

3.测量质量与下落时间关系:

测量的基本内容是:更换不同质量的砝码,测量其下落时间t。

用游标卡尺测量塔轮半径,用钢尺测量高度,砝码质量按已给定数为每个5.0g;用秒表记录下落时间。

将两个配重物放在横杆上固定位置,选用塔轮半径为某一固定值。将拉线平行缠绕在轮上。逐次选用不同质量的砝码,用秒表分别测量砝码从静止状态开始下落到达地面的时间。对每种质量的砝码,测量三次下落时间,取平均值。砝码质量从5g开始,每次增加5g,直到35g止。

用所测数据作图,从图中求出直线的斜率,从而计算转动惯量。

4.测量半径与下落时间关系

测量的基本内容是:对同一质量的砝码,更换不同的塔轮半径,测量不同的下落时间。

将两个配重物选在横杆上固定位置,用固定质量砝码施力,逐次选用不同的塔轮半径,测砝码落地所用时间。对每一塔轮半径,测三次砝码落地之间,取其平均值。注意,在更换半径是要相应的调节滑轮高度,并使绕过滑轮的拉线与塔轮平面共面。由测得的数据作图,从图上求出斜率,并计算转动惯量。

实验数据记录与处理

测量质量与下落时间的关系

经过计算与分析,塔轮的转动惯量I=1.96906E(-3)千克*平方米测量半径与下落时间关系

经过计算与分析,塔轮的转动惯量I=1.78886 E(-3)千克*平方米

观察刚体质量分布对转动惯量的影响

(配重位置n=5 )(配重位置n=4 )

(配重位置n=3 )(配重位置n=2 )

(配重位置n=1 )

配重位置与砝码下落时间

配重位置n 5 4 3 2 1 下落时间444 399 381 356 329

定性分析

由上表可知,物体质量分布越靠近质心,转动惯量越小思考题

(1)由实验数据所作的m-(1/t)2图中,如何解释在m轴上存在截距?

由于实验装置存在摩擦,m比较小的时候其重力不足以克服实验装置的摩擦力。

(2)定性分析实验中的随机误差和可能的系统误差。

1.各实验装置间的摩擦。

2.秒表计数产生的误差。

3.每次实验砝码的位置不完全相同。

4.因操作不当产生的误差。

实验体会

本实验较为简单,因而能够快速完成。仿真实验与实际的大物实验在操作上有一定的不同,是另一种思路。下载本文

显示全文
专题