经典题(一)
1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO.
求证:CD=GF.(初二)
2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150.
求证:△PBC是正三角形.(初二)
3、如图,已知四边形ABCD、A1B1C1D1都是正方形,A2、B2、C2、D2分别是AA1、BB1、CC1、DD1的中点.
求证:四边形A2B2C2D2是正方形.(初二)
4、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F.
求证:∠DEN=∠F.
经典题(二)
1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.
(1)求证:AH=2OM;
(2)若∠BAC=600,求证:AH=AO.(初二)
2、设MN是圆O外一直线,过O作OA⊥MN于A,自A引圆的两条直线,交圆于B、C及D、E,直线EB及CD分别交MN于P、Q.
求证:AP=AQ.(初二)
3、如果上题把直线MN由圆外平移至圆内,则由此可得以下命题:
设MN是圆O的弦,过MN的中点A任作两弦BC、DE,设CD、EB分别交MN于P、Q.
求证:AP=AQ.(初二)
4、如图,分别以△ABC的AC和BC为一边,在△ABC的外侧作正方形ACDE和正方形CBFG,点P是EF的中点.
求证:点P到边AB的距离等于AB的一半.(初二)
经典题(三)
1、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.
求证:CE=CF.(初二)
2、如图,四边形ABCD为正方形,DE∥AC,且CE=CA,直线EC交DA延长线于F.
求证:AE=AF.(初二)
3、设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE.
D
求证:PA=PF.(初二)
4、如图,PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于B、D.求证:AB=DC,BC=AD.(初三)
经典题(四)
1、已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,PC=5.
求:∠APB的度数.(初二)
2、设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA.
求证:∠PAB=∠PCB.(初二)
3、设ABCD为圆内接凸四边形,求证:AB·CD+AD·BC=AC·BD.(初三)
4、平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与CF相交于P,且
AE=CF.求证:∠DPA=∠DPC.(初二)
经典难题(五)
1、设P是边长为1的正△ABC内任一点,L=PA+PB+PC,
求证:≤L<2.
2、已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC的最小值.
3、P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.
4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠DCA=300,∠EBA=200,求∠BED的度数.
经典难题(六)
1. (本题7分)如图,中,, .
(1)将向右平移个单位长度,画出平移后的;
则A1的坐标为__________
(2)将绕原点旋转,画出旋转后的;
则B2 的坐标为__________
(3) 直接写出△A1B1B2的面积为___________
2.(8分)如图,Rt△ABE中,AB⊥AE以AB为直径作⊙O,交BE于C,弦CD⊥AB,F为AE上一点,连FC,则FC = FE
(1)求证CF是⊙O的切线;(4分)
(2)已知点P为⊙O上一点,
且tan∠APD =, 连CP,
求sin∠CPD的值.(4分)
3.(10分)江汉路一服装店销售一种进价为50元/件的衬衣,生产厂家规定售价为60~150元,当定价为60元/件时,平均每星期可卖出70件,每涨价10元,一星期少买5件。
(1)若销售单价为x元/件(规定x是10的正整数倍),每周销售量为y件,写出y与x的函数关系式,并写出x的取值范围?(2分)
(2)当每件衬衣定价为多少元时,服装店每星期的利润最大,最大利润为多少元?(3分)
(3)请分析销售价在哪个范围内每星期的销售利润不低于2700元?(5分)
4.如图在△ABC中,∠ACB=90 o ,BC=k AC,CD⊥AB 于D,点P为AB 边上一动点,PE⊥AC,PF⊥BC,垂足分别为E、F,
(1)若k=2时,则CE/BF = _________ (2分)
(2)若k=3时,连EF、DF, 求EF/DF的值 (5分)
(3)当k=__________时,EF/DF = 2/3.(直接写结果,不需证明) (3分)
5.(本题12分)如图1,抛物线y=ax2-5ax+4经过△ABC的三个顶点,已知BC∥x轴,点A在x轴上,点C在y轴上,且AC=BC.
(1)求抛物线的解析式;(4分)
(2)若点P是抛物线对称轴上且在x轴下方的动点,是否存在△PAB是等腰三角形,若存在,求出所有符合条件的点P坐标;不存在,请说明理由;(4分)
(3)如图2,将△AOC沿x轴对折得到△AOC1,再将△AOC1绕平面内某点旋转180°后得△A1O1C2(A,O,C1分别与点A1,O1,C2对应)使点A1,C2在抛物线上,求A1,C2的坐标.(4分)
经典难题参
经典难题(一)
1.如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG,
即△GHF∽△OGE,可得==,又CO=EO,所以CD=GF得证。
2. 如下图做△DGC使与△ADP全等,可得△PDG为等边△,从而可得
△DGC≌△APD≌△CGP,得出PC=AD=DC,和∠DCG=∠PCG=150
所以∠DCP=300 ,从而得出△PBC是正三角形
3.如下图连接BC1和AB1分别找其中点F,E.连接C2F与A2E并延长相交于Q点,
连接EB2并延长交C2Q于H点,连接FB2并延长交A2Q于G点,
由A2E=A1B1=B1C1= FB2 ,EB2=AB=BC=FC1 ,又∠GFQ+∠Q=900和
∠GEB2+∠Q=900,所以∠GEB2=∠GFQ又∠B2FC2=∠A2EB2 ,
可得△B2FC2≌△A2EB2 ,所以A2B2=B2C2 ,
又∠GFQ+∠HB2F=900和∠GFQ=∠EB2A2 ,从而可得∠A2B2 C2=900 ,
同理可得其他边垂直且相等,
从而得出四边形A2B2C2D2是正方形。
4.如下图连接AC并取其中点Q,连接QN和QM,所以可得∠QMF=∠F,∠QNM=∠DEN和∠QMN=∠QNM,从而得出∠DEN=∠F。
经典题(二)
1.(1)延长AD到F连BF,做OG⊥AF,
又∠F=∠ACB=∠BHD,
可得BH=BF,从而可得HD=DF,
又AH=GF+HG=GH+HD+DF+HG=2(GH+HD)=2OM
(2)连接OB,OC,既得∠BOC=1200,
从而可得∠BOM=600,
所以可得OB=2OM=AH=AO,
得证。
3.作OF⊥CD,OG⊥BE,连接OP,OA,OF,AF,OG,AG,OQ。
由于,
由此可得△ADF≌△ABG,从而可得∠AFC=∠AGE。
又因为PFOA与QGOA四点共圆,可得∠AFC=∠AOP和∠AGE=∠AOQ,
∠AOP=∠AOQ,从而可得AP=AQ。
4.过E,C,F点分别作AB所在直线的高EG,CI,FH。可得PQ=。
由△EGA≌△AIC,可得EG=AI,由△BFH≌△CBI,可得FH=BI。
从而可得PQ= =,从而得证。
经典题(三)
1.顺时针旋转△ADE,到△ABG,连接CG.
由于∠ABG=∠ADE=900+450=1350
从而可得B,G,D在一条直线上,可得△AGB≌△CGB。
推出AE=AG=AC=GC,可得△AGC为等边三角形。
∠AGB=300,既得∠EAC=300,从而可得∠A EC=750。
又∠EFC=∠DFA=450+300=750. 可证:CE=CF。
2.连接BD作CH⊥DE,可得四边形CGDH是正方形。
由AC=CE=2GC=2CH,
可得∠CEH=300,所以∠CAE=∠CEA=∠AED=150,
又∠FAE=900+450+150=1500,
从而可知道∠F=150,从而得出AE=AF。
3.作FG⊥CD,FE⊥BE,可以得出GFEC为正方形。
令AB=Y ,BP=X ,CE=Z ,可得PC=Y-X 。
tan∠BAP=tan∠EPF==,可得YZ=XY-X2+XZ,
即Z(Y-X)=X(Y-X) ,既得X=Z ,得出△ABP≌△PEF ,
得到PA=PF ,得证 。
经典难题(四)
1.顺时针旋转△ABP 600 ,连接PQ ,则△PBQ是正三角形。
可得△PQC是直角三角形。
所以∠APB=1500 。
2.作过P点平行于AD的直线,并选一点E,
使AE∥DC,BE∥PC.
可以得出∠ABP=∠ADP=∠AEP,可得:
AEBP共圆(一边所对两角相等)。
可得∠BAP=∠BEP=∠BCP,得证。
3.在BD取一点E,使∠BCE=∠ACD,既得△BEC∽△ADC,可得:
=,即AD•BC=BE•AC, ①
又∠ACB=∠DCE,可得△ABC∽△DEC,既得
=,即AB•CD=DE•AC, ②
由①+②可得: AB•CD+AD•BC=AC(BE+DE)= AC·BD ,得证。
4.过D作AQ⊥AE ,AG⊥CF ,由==,可得: =,由AE=FC。 可得DQ=DG,可得∠DPA=∠DPC(角平分线逆定理)。
经典题(五)
1.(1)顺时针旋转△BPC 600 ,可得△PBE为等边三角形。
既得PA+PB+PC=AP++PE+EF要使最小只要AP,PE,EF在一条直线上,
即如下图:可得最小L= ;
(2)过P点作BC的平行线交AB,AC与点D,F。
由于∠APD>∠ATP=∠ADP,
推出A①
又B②
和PF+FC>③
又DF=AF ④
由①②③④可得:最大L< 2 ;
由(1)和(2)既得:≤L<2 。
2.顺时针旋转△BPC 600 ,可得△PBE为等边三角形。
既得PA+PB+PC=AP+PE+EF要使最小只要AP,PE,EF在一条直线上,
即如下图:可得最小PA+PB+PC=AF。
既得AF= = =
=
。
3.顺时针旋转△ABP 900 ,可得如下图:
既得正方形边长L = = 。
4.在AB上找一点F,使∠BCF=600 ,
连接EF,DG,既得△BGC为等边三角形,
可得∠DCF=100 , ∠FCE=200 ,推出△ABE≌△ACF ,
得到BE=CF , FG=GE 。
推出 : △FGE为等边三角形 ,可得∠AFE=800 ,
既得:∠DFG=400 ①
又BD=BC=BG ,既得∠BGD=800 ,既得∠DGF=400 ②
推得:DF=DG ,得到:△DFE≌△DGE ,
从而推得:∠FED=∠BED=300 。下载本文