视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
2016年山东省高考数学试卷(理科)
2025-09-30 22:50:43 责编:小OO
文档
2016年山东省高考数学试卷(理科)

 

一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项,只有一个选项符合题目要求.

1.(5分)若复数z满足2z+=3﹣2i,其中i为虚数单位,则z=(  )

A.1+2i    B.1﹣2i    C.﹣1+2i    D.﹣1﹣2i

2.(5分)设集合A={y|y=2x,x∈R},B={x|x2﹣1<0},则A∪B=(  )

A.(﹣1,1)    B.(0,1)    C.(﹣1,+∞)    D.(0,+∞)

3.(5分)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是(  )

A.56    B.60    C.120    D.140

4.(5分)若变量x,y满足,则x2+y2的最大值是(  )

A.4    B.9    C.10    D.12

5.(5分)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为(  )

A.+π    B.+π    C.+π    D.1+π

6.(5分)已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b相交”是“平面α和平面β相交”的(  )

A.充分不必要条件    B.必要不充分条件

C.充要条件    D.既不充分也不必要条件

7.(5分)函数f(x)=(sinx+cosx)(cosx﹣sinx)的最小正周期是(  )

A.    B.π    C.    D.2π

8.(5分)已知非零向量,满足4||=3||,cos<,>=.若⊥(t+),则实数t的值为(  )

A.4    B.﹣4    C.    D.﹣

9.(5分)已知函数f(x)的定义域为R.当x<0时,f(x)=x3﹣1;当﹣1≤x≤1时,f(﹣x)=﹣f(x);当x>时,f(x+)=f(x﹣).则f(6)=(  )

A.﹣2    B.1    C.0    D.2

10.(5分)若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是(  )

A.y=sinx    B.y=lnx    C.y=ex    D.y=x3

 

二、填空题:本大题共5小题,每小题5分,共25分.

11.(5分)执行如图的程序框图,若输入的a,b的值分别为0和9,则输出的i的值为     .

  

12.(5分)若(ax2+)5的展开式中x5的系数是﹣80,则实数a=     .

13.(5分)已知双曲线E:﹣=1(a>0,b>0),若矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是     .

14.(5分)在[﹣1,1]上随机地取一个数k,则事件“直线y=kx与圆(x﹣5)2+y2=9相交”发生的概率为     .

15.(5分)已知函数f(x)=,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是     .

 

三、解答题,:本大题共6小题,共75分.

16.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)=+.

(Ⅰ)证明:a+b=2c;

(Ⅱ)求cosC的最小值.

17.(12分)在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O′的直径,FB是圆台的一条母线.

(I)已知G,H分别为EC,FB的中点,求证:GH∥平面ABC;

(Ⅱ)已知EF=FB=AC=2,AB=BC,求二面角F﹣BC﹣A的余弦值.

18.(12分)已知数列{an}的前n项和Sn=3n2+8n,{bn}是等差数列,且an=bn+bn+1.

(Ⅰ)求数列{bn}的通项公式;

(Ⅱ)令cn=,求数列{cn}的前n项和Tn.

19.(12分)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不影响.假设“星队”参加两轮活动,求:

(I)“星队”至少猜对3个成语的概率;

(II)“星队”两轮得分之和为X的分布列和数学期望EX.

20.(13分)已知f(x)=a(x﹣lnx)+,a∈R.

(I)讨论f(x)的单调性;

(II)当a=1时,证明f(x)>f′(x)+对于任意的x∈[1,2]成立.

21.(14分)平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率是,抛物线E:x2=2y的焦点F是C的一个顶点.

(I)求椭圆C的方程;

(Ⅱ)设P是E上的动点,且位于第一象限,E在点P处的切线l与C交于不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.

(i)求证:点M在定直线上;

(ii)直线l与y轴交于点G,记△PFG的面积为S1,△PDM的面积为S2,求的最大值及取得最大值时点P的坐标.

 

2016年山东省高考数学试卷(理科)

参与试题解析

 

一、选择题:本大题共10小题,每小题5分,共50分,每小题给出四个选项,只有一个选项符合题目要求.

1.(5分)若复数z满足2z+=3﹣2i,其中i为虚数单位,则z=(  )

A.1+2i    B.1﹣2i    C.﹣1+2i    D.﹣1﹣2i

【分析】设出复数z,通过复数方程求解即可.

【解答】解:复数z满足2z+=3﹣2i,

设z=a+bi,

可得:2a+2bi+a﹣bi=3﹣2i.

解得a=1,b=﹣2.

z=1﹣2i.

故选:B.

【点评】本题考查复数的代数形式混合运算,考查计算能力.

 

2.(5分)设集合A={y|y=2x,x∈R},B={x|x2﹣1<0},则A∪B=(  )

A.(﹣1,1)    B.(0,1)    C.(﹣1,+∞)    D.(0,+∞)

【分析】求解指数函数的值域化简A,求解一元二次不等式化简B,再由并集运算得答案.

【解答】解:∵A={y|y=2x,x∈R}=(0,+∞),

B={x|x2﹣1<0}=(﹣1,1),

∴A∪B=(0,+∞)∪(﹣1,1)=(﹣1,+∞).

故选:C.

【点评】本题考查并集及其运算,考查了指数函数的值域,考查一元二次不等式的解法,是基础题.

 

3.(5分)某高校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是(  )

A.56    B.60    C.120    D.140

【分析】根据已知中的频率分布直方图,先计算出自习时间不少于22.5小时的频率,进而可得自习时间不少于22.5小时的频数.

【解答】解:自习时间不少于22.5小时的频率为:(0.16+0.08+0.04)×2.5=0.7,

故自习时间不少于22.5小时的频率为:0.7×200=140,

故选:D.

【点评】本题考查的知识点是频率分布直方图,难度不大,属于基础题目.

 

4.(5分)若变量x,y满足,则x2+y2的最大值是(  )

A.4    B.9    C.10    D.12

【分析】由约束条件作出可行域,然后结合x2+y2的几何意义,即可行域内的动点与原点距离的平方求得x2+y2的最大值.

【解答】解:由约束条件作出可行域如图,

∵A(0,﹣3),C(0,2),

∴|OA|>|OC|,

联立,解得B(3,﹣1).

∵,

∴x2+y2的最大值是10.

故选:C.

【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法和数学转化思想方法,是中档题.

 

5.(5分)一个由半球和四棱锥组成的几何体,其三视图如图所示.则该几何体的体积为(  )

A.+π    B.+π    C.+π    D.1+π

【分析】由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,进而可得答案.

【解答】解:由已知中的三视图可得:该几何体上部是一个半球,下部是一个四棱锥,

半球的直径为棱锥的底面对角线,

由棱锥的底底面棱长为1,可得2R=.

故R=,故半球的体积为:=π,

棱锥的底面面积为:1,高为1,

故棱锥的体积V=,

故组合体的体积为:+π,

故选:C.

【点评】本题考查的知识点是由三视图,求体积和表面积,根据已知的三视图,判断几何体的形状是解答的关键.

 

6.(5分)已知直线a,b分别在两个不同的平面α,β内.则“直线a和直线b相交”是“平面α和平面β相交”的(  )

A.充分不必要条件    B.必要不充分条件

C.充要条件    D.既不充分也不必要条件

【分析】直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”⇒“平面α和平面β相交”,反之不成立.

【解答】解:直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”⇒“平面α和平面β相交”,

反之不成立.

∴“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.

故选:A.

【点评】本题考查了空间位置关系、简易逻辑的判定方法,考查了推理能力,属于基础题.

 

7.(5分)函数f(x)=(sinx+cosx)(cosx﹣sinx)的最小正周期是(  )

A.    B.π    C.    D.2π

【分析】利用和差角及二倍角公式,化简函数的解析式,进而可得函数的周期.

【解答】解:函数f(x)=(sinx+cosx)(cosx﹣sinx)=2sin(x+)•2cos(x+)=2sin(2x+),

∴T=π,

故选:B.

【点评】本题考查的知识点是和差角及二倍角公式,三角函数的周期,难度中档.

 

8.(5分)已知非零向量,满足4||=3||,cos<,>=.若⊥(t+),则实数t的值为(  )

A.4    B.﹣4    C.    D.﹣

【分析】若⊥(t+),则•(t+)=0,进而可得实数t的值.

【解答】解:∵4||=3||,cos<,>=,⊥(t+),

∴•(t+)=t•+2=t||•||•+||2=()||2=0,

解得:t=﹣4,

故选:B.

【点评】本题考查的知识点是平面向量数量积的运算,向量垂直的充要条件,难度不大,属于基础题.

 

9.(5分)已知函数f(x)的定义域为R.当x<0时,f(x)=x3﹣1;当﹣1≤x≤1时,f(﹣x)=﹣f(x);当x>时,f(x+)=f(x﹣).则f(6)=(  )

A.﹣2    B.1    C.0    D.2

【分析】求得函数的周期为1,再利用当﹣1≤x≤1时,f(﹣x)=﹣f(x),得到f(1)=﹣f(﹣1),当x<0时,f(x)=x3﹣1,得到f(﹣1)=﹣2,即可得出结论.

【解答】解:∵当x>时,f(x+)=f(x﹣),

∴当x>时,f(x+1)=f(x),即周期为1.

∴f(6)=f(1),

∵当﹣1≤x≤1时,f(﹣x)=﹣f(x),

∴f(1)=﹣f(﹣1),

∵当x<0时,f(x)=x3﹣1,

∴f(﹣1)=﹣2,

∴f(1)=﹣f(﹣1)=2,

∴f(6)=2.

故选:D.

【点评】本题考查函数值的计算,考查函数的周期性,考查学生的计算能力,属于中档题.

 

10.(5分)若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称y=f(x)具有T性质.下列函数中具有T性质的是(  )

A.y=sinx    B.y=lnx    C.y=ex    D.y=x3

【分析】若函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则函数y=f(x)的导函数上存在两点,使这点的导函数值乘积为﹣1,进而可得答案.

【解答】解:函数y=f(x)的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,

则函数y=f(x)的导函数上存在两点,使这点的导函数值乘积为﹣1,

当y=sinx时,y′=cosx,满足条件;

当y=lnx时,y′=>0恒成立,不满足条件;

当y=ex时,y′=ex>0恒成立,不满足条件;

当y=x3时,y′=3x2>0恒成立,不满足条件;

故选:A.

【点评】本题考查的知识点是利用导数研究曲线上某点切线方程,转化思想,难度中档.

 

二、填空题:本大题共5小题,每小题5分,共25分.

11.(5分)执行如图的程序框图,若输入的a,b的值分别为0和9,则输出的i的值为 3 .

  

【分析】根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量i的值,模拟程序的运行过程,可得答案.

【解答】解:∵输入的a,b的值分别为0和9,i=1.

第一次执行循环体后:a=1,b=8,不满足条件a>b,故i=2;

第二次执行循环体后:a=3,b=6,不满足条件a>b,故i=3;

第三次执行循环体后:a=6,b=3,满足条件a>b,

故输出的i值为:3,

故答案为:3

【点评】本题考查的知识点是程序框图,当循环次数不多,或有规律可循时,可采用模拟程序法进行解答.

 

12.(5分)若(ax2+)5的展开式中x5的系数是﹣80,则实数a= ﹣2 .

【分析】利用二项展开式的通项公式Tr+1=(ax2)5﹣r,化简可得求的x5的系数.

【解答】解:(ax2+)5的展开式的通项公式Tr+1=(ax2)5﹣r=a5﹣r,

令10﹣=5,解得r=2.

∵(ax2+)5的展开式中x5的系数是﹣80

∴a3=﹣80,

得a=﹣2.

【点评】考查了利用二项式定理的性质求二项式展开式的系数,属常规题型.

 

13.(5分)已知双曲线E:﹣=1(a>0,b>0),若矩形ABCD的四个顶点在E上,AB,CD的中点为E的两个焦点,且2|AB|=3|BC|,则E的离心率是 2 .

【分析】可令x=c,代入双曲线的方程,求得y=±,再由题意设出A,B,C,D的坐标,由2|AB|=3|BC|,可得a,b,c的方程,运用离心率公式计算即可得到所求值.

【解答】解:令x=c,代入双曲线的方程可得y=±b=±,

由题意可设A(﹣c,),B(﹣c,﹣),C(c,﹣),D(c,),

由2|AB|=3|BC|,可得

2•=3•2c,即为2b2=3ac,

由b2=c2﹣a2,e=,可得2e2﹣3e﹣2=0,

解得e=2(负的舍去).

故答案为:2.

【点评】本题考查双曲线的离心率的求法,注意运用方程的思想,正确设出A,B,C,D的坐标是解题的关键,考查运算能力,属于中档题.

 

14.(5分)在[﹣1,1]上随机地取一个数k,则事件“直线y=kx与圆(x﹣5)2+y2=9相交”发生的概率为  .

【分析】利用圆心到直线的距离小于半径可得到直线与圆相交,可求出满足条件的k,最后根据几何概型的概率公式可求出所求.

【解答】解:圆(x﹣5)2+y2=9的圆心为(5,0),半径为3.

圆心到直线y=kx的距离为,

要使直线y=kx与圆(x﹣5)2+y2=9相交,则<3,解得﹣<k<.

∴在区间[﹣1,1]上随机取一个数k,使直线y=kx与圆(x﹣5)2+y2=9相交相交的概率为=.

故答案为:.

【点评】本题主要考查了几何概型的概率,以及直线与圆相交的性质,解题的关键弄清概率类型,同时考查了计算能力,属于基础题.

 

15.(5分)已知函数f(x)=,其中m>0,若存在实数b,使得关于x的方程f(x)=b有三个不同的根,则m的取值范围是 (3,+∞) .

【分析】作出函数f(x)=的图象,依题意,可得4m﹣m2<m(m>0),解之即可.

【解答】解:当m>0时,函数f(x)=的图象如下:

∵x>m时,f(x)=x2﹣2mx+4m=(x﹣m)2+4m﹣m2>4m﹣m2,

∴y要使得关于x的方程f(x)=b有三个不同的根,

必须4m﹣m2<m(m>0),

即m2>3m(m>0),

解得m>3,

∴m的取值范围是(3,+∞),

故答案为:(3,+∞).

【点评】本题考查根的存在性及根的个数判断,数形结合思想的运用是关键,分析得到4m﹣m2<m是难点,属于中档题.

 

三、解答题,:本大题共6小题,共75分.

16.(12分)在△ABC中,角A,B,C的对边分别为a,b,c,已知2(tanA+tanB)=+.

(Ⅰ)证明:a+b=2c;

(Ⅱ)求cosC的最小值.

【分析】(Ⅰ)由切化弦公式,带入并整理可得2(sinAcosB+cosAsinB)=sinA+cosB,这样根据两角和的正弦公式即可得到sinA+sinB=2sinC,从而根据正弦定理便可得出a+b=2c;

(Ⅱ)根据a+b=2c,两边平方便可得出a2+b2+2ab=4c2,从而得出a2+b2=4c2﹣2ab,并由不等式a2+b2≥2ab得出c2≥ab,也就得到了,这样由余弦定理便可得出,从而得出cosC的范围,进而便可得出cosC的最小值.

【解答】解:(Ⅰ)证明:由得:

∴两边同乘以cosAcosB得,2(sinAcosB+cosAsinB)=sinA+sinB;

∴2sin(A+B)=sinA+sinB;

即sinA+sinB=2sinC(1);

根据正弦定理,;

∴,带入(1)得:;

∴a+b=2c;

(Ⅱ)a+b=2c;

∴(a+b)2=a2+b2+2ab=4c2;

∴a2+b2=4c2﹣2ab,且4c2≥4ab,当且仅当a=b时取等号;

又a,b>0;

∴;

∴由余弦定理,=;

∴cosC的最小值为.

【点评】考查切化弦公式,两角和的正弦公式,三角形的内角和为π,以及三角函数的诱导公式,正余弦定理,不等式a2+b2≥2ab的应用,不等式的性质.

 

17.(12分)在如图所示的圆台中,AC是下底面圆O的直径,EF是上底面圆O′的直径,FB是圆台的一条母线.

(I)已知G,H分别为EC,FB的中点,求证:GH∥平面ABC;

(Ⅱ)已知EF=FB=AC=2,AB=BC,求二面角F﹣BC﹣A的余弦值.

【分析】(Ⅰ)取FC中点Q,连结GQ、QH,推导出平面GQH∥平面ABC,由此能证明GH∥平面ABC.

(Ⅱ)由AB=BC,知BO⊥AC,以O为原点,OA为x轴,OB为y轴,OO′为z轴,建立空间直角坐标系,利用向量法能求出二面角F﹣BC﹣A的余弦值.

【解答】证明:(Ⅰ)取FC中点Q,连结GQ、QH,

∵G、H为EC、FB的中点,

∴GQ,QH,

又∵EF∥BO,∴GQ∥BO,

∵QH∩GQ=Q,BC∩BO=B,

∴平面GQH∥平面ABC,

∵GH⊂面GQH,∴GH∥平面ABC.

解:(Ⅱ)∵AB=BC,∴BO⊥AC,

又∵OO′⊥面ABC,

∴以O为原点,OA为x轴,OB为y轴,OO′为z轴,建立空间直角坐标系,

则A(,0,0),C(﹣2,0,0),B(0,2,0),O′(0,0,3),F(0,,3),

=(﹣2,﹣,﹣3),=(2,2,0),

由题意可知面ABC的法向量为=(0,0,3),

设=(x0,y0,z0)为面FCB的法向量,

则,即,

取x0=1,则=(1,﹣1,﹣),

∴cos<,>==﹣.

∵二面角F﹣BC﹣A的平面角是锐角,

∴二面角F﹣BC﹣A的余弦值为.

【点评】本题考查线面平行的证明,考查二面角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

 

18.(12分)已知数列{an}的前n项和Sn=3n2+8n,{bn}是等差数列,且an=bn+bn+1.

(Ⅰ)求数列{bn}的通项公式;

(Ⅱ)令cn=,求数列{cn}的前n项和Tn.

【分析】(Ⅰ)求出数列{an}的通项公式,再求数列{bn}的通项公式;

(Ⅱ)求出数列{cn}的通项,利用错位相减法求数列{cn}的前n项和Tn.

【解答】解:(Ⅰ)Sn=3n2+8n,

∴n≥2时,an=Sn﹣Sn﹣1=6n+5,

n=1时,a1=S1=11,∴an=6n+5;

∵an=bn+bn+1,

∴an﹣1=bn﹣1+bn,

∴an﹣an﹣1=bn+1﹣bn﹣1.

∴2d=6,

∴d=3,

∵a1=b1+b2,

∴11=2b1+3,

∴b1=4,

∴bn=4+3(n﹣1)=3n+1;

(Ⅱ)cn========6(n+1)•2n,

∴Tn=6[2•2+3•22+…+(n+1)•2n]①,

∴2Tn=6[2•22+3•23+…+n•2n+(n+1)•2n+1]②,

①﹣②可得

﹣Tn=6[2•2+22+23+…+2n﹣(n+1)•2n+1]

=12+6×﹣6(n+1)•2n+1

=(﹣6n)•2n+1=﹣3n•2n+2,

∴Tn=3n•2n+2.

【点评】本题考查数列的通项与求和,着重考查等差数列的通项与错位相减法的运用,考查分析与运算能力,属于中档题.

 

19.(12分)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不影响.假设“星队”参加两轮活动,求:

(I)“星队”至少猜对3个成语的概率;

(II)“星队”两轮得分之和为X的分布列和数学期望EX.

【分析】(I)“星队”至少猜对3个成语包含“甲猜对1个,乙猜对2个”,“甲猜对2个,乙猜对1个”,“甲猜对2个,乙猜对2个”三个基本事件,进而可得答案;

(II)由已知可得:“星队”两轮得分之和为X可能为:0,1,2,3,4,6,进而得到X的分布列和数学期望.

【解答】解:(I)“星队”至少猜对3个成语包含“甲猜对1个,乙猜对2个”,“甲猜对2个,乙猜对1个”,“甲猜对2个,乙猜对2个”三个基本事件,

故概率P=++=++=,

(II)“星队”两轮得分之和为X可能为:0,1,2,3,4,6,

则P(X=0)==,

P(X=1)=2×[+]=,

P(X=2)=+++=,

P(X=3)=2×=,

P(X=4)=2×[+]=

P(X=6)==

故X的分布列如下图所示:

 X 012 3 4 6
 P 

 

 

∴数学期望EX=0×+1×+2×+3×+4×+6×==

【点评】本题考查离散型随机变量的分布列和数学期望,属中档题.

 

20.(13分)已知f(x)=a(x﹣lnx)+,a∈R.

(I)讨论f(x)的单调性;

(II)当a=1时,证明f(x)>f′(x)+对于任意的x∈[1,2]成立.

【分析】(Ⅰ)求出原函数的导函数,然后对a分类分析导函数的符号,由导函数的符号确定原函数的单调性;

(Ⅱ)构造函数F(x)=f(x)﹣f′(x),令g(x)=x﹣lnx,h(x)=.则F(x)=f(x)﹣f′(x)=g(x)+h(x),利用导数分别求g(x)与h(x)的最小值得到F(x)>恒成立.由此可得f(x)>f′(x)+对于任意的x∈[1,2]成立.

【解答】(Ⅰ)解:由f(x)=a(x﹣lnx)+,

得f′(x)=a(1﹣)+

==(x>0).

若a≤0,则ax2﹣2<0恒成立,

∴当x∈(0,1)时,f′(x)>0,f(x)为增函数,

当x∈(1,+∞)时,f′(x)<0,f(x)为减函数;

当a>0,若0<a<2,当x∈(0,1)和(,+∞)时,f′(x)>0,f(x)为增函数,

当x∈(1,)时,f′(x)<0,f(x)为减函数;

若a=2,f′(x)≥0恒成立,f(x)在(0,+∞)上为增函数;

若a>2,当x∈(0,)和(1,+∞)时,f′(x)>0,f(x)为增函数,

当x∈(,1)时,f′(x)<0,f(x)为减函数;

(Ⅱ)解:∵a=1,

令F(x)=f(x)﹣f′(x)=x﹣lnx﹣1=x﹣lnx+.

令g(x)=x﹣lnx,h(x)=.

则F(x)=f(x)﹣f′(x)=g(x)+h(x),

由,可得g(x)≥g(1)=1,当且仅当x=1时取等号;

又,

设φ(x)=﹣3x2﹣2x+6,则φ(x)在[1,2]上单调递减,

且φ(1)=1,φ(2)=﹣10,

∴在[1,2]上存在x0,使得x∈(1,x0) 时φ(x0)>0,x∈(x0,2)时,φ(x0)<0,

∴函数h(x)在(1,x0)上单调递增;在(x0,2)上单调递减,

由于h(1)=1,h(2)=,因此h(x)≥h(2)=,当且仅当x=2取等号,

∴f(x)﹣f′(x)=g(x)+h(x)>g(1)+h(2)=,

∴F(x)>恒成立.

即f(x)>f′(x)+对于任意的x∈[1,2]成立.

【点评】本题考查利用导数加以函数的单调性,考查了利用导数求函数的最值,考查了分类讨论的数学思想方法和数学转化思想方法,是压轴题.

 

21.(14分)平面直角坐标系xOy中,椭圆C:+=1(a>b>0)的离心率是,抛物线E:x2=2y的焦点F是C的一个顶点.

(I)求椭圆C的方程;

(Ⅱ)设P是E上的动点,且位于第一象限,E在点P处的切线l与C交于不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.

(i)求证:点M在定直线上;

(ii)直线l与y轴交于点G,记△PFG的面积为S1,△PDM的面积为S2,求的最大值及取得最大值时点P的坐标.

【分析】(I)运用椭圆的离心率公式和抛物线的焦点坐标,以及椭圆的a,b,c的关系,解得a,b,进而得到椭圆的方程;

(Ⅱ)(i)设P(x0,y0),运用导数求得切线的斜率和方程,代入椭圆方程,运用韦达定理,可得中点D的坐标,求得OD的方程,再令x=x0,可得y=﹣.进而得到定直线;

(ii)由直线l的方程为y=x0x﹣y0,令x=0,可得G(0,﹣y0),运用三角形的面积公式,可得S1=|FG|•|x0|=x0•(+y0),S2=|PM|•|x0﹣|,化简整理,再1+2x02=t(t≥1),整理可得t的二次方程,进而得到最大值及此时P的坐标.

【解答】解:(I)由题意可得e==,抛物线E:x2=2y的焦点F为(0,),

即有b=,a2﹣c2=,

解得a=1,c=,

可得椭圆的方程为x2+4y2=1;

(Ⅱ)(i)证明:设P(x0,y0),可得x02=2y0,

由y=x2的导数为y′=x,即有切线的斜率为x0,

则切线的方程为y﹣y0=x0(x﹣x0),

可化为y=x0x﹣y0,代入椭圆方程,

可得(1+4x02)x2﹣8x0y0x+4y02﹣1=0,

△=x02y02﹣4(1+4x02)(4y02﹣1)>0,可得1+4x02>4y02.

设A(x1,y1),B(x2,y2),

可得x1+x2=,即有中点D(,﹣),

直线OD的方程为y=﹣x,可令x=x0,可得y=﹣.

即有点M在定直线y=﹣上;

(ii)直线l的方程为y=x0x﹣y0,令x=0,可得G(0,﹣y0),

则S1=|FG|•|x0|=x0•(+y0)=x0(1+x02);

S2=|PM|•|x0﹣|=(y0+)•=x0•,

则=,

令1+2x02=t(t≥1),则==

==2+﹣=﹣(﹣)2+,

则当t=2,即x0=时,取得最大值,

此时点P的坐标为(,).

【点评】本题考查椭圆的方程的求法,注意运用椭圆的离心率和抛物线的焦点坐标,考查直线和抛物线斜的条件,以及直线方程的运用,考查三角形的面积的计算,以及化简整理的运算能力,属于难题.

 下载本文

显示全文
专题