视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
聚丙烯增韧改性技术综述
2025-09-30 22:53:40 责编:小OO
文档
0 引 言

聚丙烯是产量仅次于聚乙烯、聚氯乙烯的通用塑料. 由于其原料丰富, 与其它通用热塑性塑料相比,聚丙烯具有相对密度小、价格低、加工性好以及综合性能较好等特点, 并有突出的耐应力开裂性和耐磨性. 近年来发展迅速, 成为塑料中产量增长最快的品种. 但聚丙烯还存在低温脆性、韧性差等缺点, 因此在作为结构材料和工程材料应用时受到了很大的. 为了扩大聚丙烯的使用范围, 国内外开始重视改性技术, 使聚丙烯塑料向工程化方向发展. 作者就聚丙烯提高韧性的机理与影响改性产物性能的因素进行了探讨.

1技术途径

1聚丙烯改性技术可分为化学改性和物理改性两种 . 化学改性是指通过接枝、嵌段共聚, 在聚丙烯大分子链中引入其它组分, 或是通过交联剂等进行交联, 或是通过成核剂、发泡剂进行改性. 物理改性是在聚丙烯基体中加入其它的材料或有特殊功能的添加剂, 经过混合、混炼而制成具有优异性能的聚丙烯复合材料. 物理改性大致可分为填充改性、共混改性、增强改性和功能性改性等.

填充改性是指在聚丙烯树脂中加入一定量的无机或有机填料来提高制品的性能 , 主要在模量方面有较大提高. 填充改性能降低材料的成本, 但有时它在提高一种性能的同时会降低其它的性能. 增强改性通常选用玻璃纤维、石棉纤维、单晶纤维和铍、硼、碳化硅等增强材料使聚丙烯强度提高. 增强改性是复合材料发展的一个方向. 共混改性是指用其它塑料、橡胶或热塑性弹性体与聚丙烯共混, 填入聚丙烯中较大的球晶内, 由此改善聚丙烯的韧性和低温脆性. 常用的改性材料有聚乙烯、顺丁橡胶、乙丙橡胶、丁苯橡胶和乙烯2醋酸乙烯共聚物. 功能性改性是根据使用的材料所要求具有的功能性如抗静电、阻燃、透明性等加入特定试剂使聚丙烯改性.

物理改性比化学改性容易进行, 使聚丙烯性能改善也较显著, 推广容易, 经济效益明显; 特别是共混改性技术开发周期短、耗费少、制品的物理性能同样能达到应用要求. 因此, 共混改性是利用现有高分子材料开发新型材料的简便而有效的方法.

2 增韧机理

共混改性聚丙烯的主要目的是增加其韧性, 弹性体在其中起非常重要的作用. 有关机理的研究很多, 大多研究者引用DrW u 的剪切带屈服理论 .在拉伸应力作用下, 高聚物中某些薄弱部位 由于应力集中而产生空化条纹状形变区, 即材料产生了银纹, 它可以进一步发展成为裂纹, 所以它常是聚合物破裂的开端. 但是, 形成银纹要消耗大量的热量, 因此若银纹能被适当地终止而不致发展成裂纹, 那么它反而可延迟聚合物的破裂, 提高聚合物的韧性.

采用橡胶类聚合物与聚丙烯共混改性时, 材料性能不仅与橡胶类聚合物分散相有关, 而且也与聚丙烯树脂连续相的特性有关. 如果橡胶相和聚丙烯相形成均相体系, 就不能起到增韧效果. 相反, 如果橡胶类聚合物和聚丙烯完全不相容, 胶粒尺寸必然很大, 外形也不规则, 局部应力将过于集中, 直接导致裂纹和裂缝的生成; 而且, 不相容体系的两相界面处会发生分离, 产生空隙, 与橡胶类聚合物大小相当的空隙会使应力集中增加, 使聚丙烯产生开裂而造成材料破坏. 只有当橡胶类聚合物与聚丙烯具有好的相容性时, 橡胶类聚合物以一定的粒径分布在聚丙烯连续相中, 使橡胶类聚合物与聚丙烯组成一种良好界面相互作用的两相或多相形态结构体系. 即在共混体系中, 橡胶类聚合物呈细微化颗粒分散相(俗称“岛”), 随机分布在聚丙烯连续相(俗称“海”)的聚丙烯球晶中或球晶之间, 使聚丙烯大而脆的球晶成为细而密集的球晶, 形成具有良好相界面作用的“海2岛”结构. 当具有这种结构体系的增韧聚丙烯在受到外力作用时, 银纹、裂纹和裂缝首先产生在聚丙烯连续相中, 处于聚丙烯裂纹和裂缝上的橡胶类聚合物粒子首先是充当应力集中的中心, 诱发大量银纹和剪切带的产生, 大量银纹和剪切带的产生吸收大量的能量, 从而阻止裂纹和裂缝的穿过. 另外, 橡胶颗粒还可以阻滞、转向并终止小裂纹的发展, 使之不致发展成破坏性的裂纹, 产生在聚丙烯相中的银纹可以穿过小于其宽度的橡胶类聚合物粒子而生长. 在弹性体颗粒的影响下, 当材料受到外力时, 高聚物中生长的银纹遇到橡胶类聚合物大粒子时能成许多方向各异的小银纹. 即银纹可在橡胶类聚合物粒子表面支化, 银纹的和支化能控制银纹的发展, 阻止大银纹变成有破坏性的大裂纹和大裂缝; 同时, 银纹的增长伴随着空化空间的发展, 空化空间的发展阻止了基体内部裂纹的产生, 延缓了材料的破坏, 从而达到提高聚丙烯韧性的目的.

3 影响因素

通常将高分子的共混改性技术称为 ABC 技术, 即合金 (A lloy)、共混 (Blend) 和复合化(Composite) 技术. 高分子共混改性是利用溶度参数相近和反应共混的原理在反应器或螺杆挤出机中将两种或两种以上的聚合物材料及助剂在一定温度下进行机械掺混, 最终形成一种宏观上均相, 微观上分相的新材料的工艺方法. 聚丙烯共混改性的方法有: 相容体系的直接共混, 添加相容剂共混以及反应性共混等. 影响聚丙烯共混改性的因素有: 共混体系的结构形态、相容性、组成和共混工艺等.

3. 1 共混体系结构形态的影响

高分子材料的宏观性能与其微观结构紧密相关. 高分子共混物是一种多相结构的材料, 其力学性能取决于共混物界面组分之间相互作用的强弱, 即两相之间结合力的大小以及分散相颗粒的大小和形状等. 高分子共混物的结构形态是影响其性能的决定性因素之一.作为结晶材料的聚丙烯与其它材料组成的共混体系主要有: 结晶2非结晶和结晶2结晶体系两种. 在

前一种体系中, 影响形态结构的主要因素是共混体系的相容性. 有研究表明 : 聚丙烯共混物的高冲击性与其结晶度无关, 而聚丙烯球晶较大, 球晶之间有较宽的缝隙是其产生裂纹发脆的原因 . 在聚丙烯中加入一些非晶组分如癸基橡胶 (DR) 树脂和酚醛树脂, 则对聚丙烯结晶有某种弱的成核作用, 导致聚丙烯晶体一定程度的微细化. 酚醛树脂使聚丙烯球晶变小, 球晶间的间隙变窄, 吸收冲击能, 使聚丙烯的冲击强度提高. 在酚醛树脂改性聚丙烯的基础上, 加入DR 树脂, 可进一步改变材料的结晶形态, 大球晶基本消失, 球晶间的间隙几乎没有, 两种树脂的界面变得较模糊, 因此材料的冲击性能得到改善.

在结晶2结晶体系中, 影响形态结构的主要因素是高熔点组分的结晶性和组成比 . 高熔点组分生成的结晶越大、越少时, 对低熔点组分的影响越小. 对于两组分晶态相容的共混体系, 有可能生成共晶或同晶; 对于晶态不相容但无定形态可相容的共混体系, 其结晶行为应遵循前一种体系同样的规律 ; 对于晶态和无定形态都不相容的共混体系, 如聚丙烯 (PP)/聚乙烯(PE), 虽然两种高聚物分别结晶, 但球晶尺寸、结晶度都发生了变化. 如尼龙等极性结晶高聚物对聚丙烯结晶有成核作用, 这些成核高聚物对改善聚丙烯的低温脆性、抗静电性等都有一定效果.

3. 2 共混体系相容性的影响

4

共混聚丙烯物理机械性能的好坏主要取决于共混体系各组分之间的结合力 , 而结合力的大小又与共混组分之间的相容性有密切的关系. 若组分间的相容性很差, 则混合困难, 分散不均, 分子链段活动性小, 分散相的尺寸大, 相畴粗大, 相界面的结合差, 界面很明显, 结合力小, 无法得到具有良好综合性能的高分子材料; 若共混体系半相容, 则相畴适中, 相界面模糊, 结合力大, 共混改性效果优良; 但如果两相体系完全相容, 共混物呈均相体系, 相畴很小, 共混改性效果反而不好. 所以, 对共混物来说, 微观均相并不一定有最理想的力学结果, 重要的是保证宏观相容. 因此, 在考虑分散相组分时, 热力学相容不是唯一条件, 只要有适当的混容性即可.

目前, 提高共混物相容性的方法很多 . 通过填加增容剂改善相容性的方法已得到广泛的应用. 选择增容剂最好使其中的两个链段与共混物的两个组分分别相同, 接枝、嵌段共聚物就具有这种性质. 相同的链段所形成的物理亲和力使接枝、嵌段共聚物分布在相的界面, 其共价键将两相连接起来, 降低了表面张力, 增进了相间的粘接力, 进而提高了力学性能. 溶解度参数是判断两种高聚物混合效果的重要条件.

3. 3 共混体系组成的影响

共混体系中, 组分聚合物的种类、规格不同, 所得到的共混物性能各异. 不同的增韧剂在聚丙烯中的增韧效果不同 , 如表 1 所示. 由表 1 可见, EPDM 增韧效果较好.

2有资料报道 , 与乙烯、Α2烯烃共聚的聚丙烯的冲击韧性明显高于均聚聚丙烯; 在相同橡胶含量下,增韧共聚聚丙烯的效果远远好于增韧均聚聚丙烯的效果; 而且, 选用乙丙橡胶为增韧剂时, 其结晶度越低, 增韧效果越好.共混体系组成中分散相的尺寸及其分布对材料的韧性都有影响, 它还与共混工艺条件密切相关.

3. 4 共混工艺条件的影响

共混工艺条件变化引起共混体系的形态变化, 使得共混物的性能也发生相应的变化. 共混工艺条件。主要包括共混方法、共混温度及共混时间等.

共混方法不同 , 如用双辊炼塑机、密炼机、挤出机、熔液或乳液共混等, 共混物的结构形态不同, 其性能各异. 此外, 共混的加料方式对共混物的性能也有影响. 一般采用二阶共混分散模式: 母料配置和母料稀释. 采用这种模式共混时, 分散相粒径分布接近于对称分布, 并可利用此模式来控制分散相粒径的大小及分布的宽窄 .

共混温度是影响混合效果好坏的极为重要的因素, 因为共混温度与共混物的形态结构有密切的关系 . 一般认为, 共混温度以超过塑料的软化点 100 ℃ 为宜. 聚丙烯是一种结晶物, 共混温度将会影响其结晶形态, 从而影响共混物性能. 聚丙烯在高温条件下结晶时会得到大球晶的形态 , 这是改性时不希望出现的此外, 共混时间也是必须控制的因素. 同一共混体系, 在相同温度下, 共混时间的长短对共混物的性能有很大影响. 根据时温等效原理也可得出共混时间过长, 等同于共混温度过高的效果.

4 结 论

由以上可以看出, 共混体系的结构形态、相容性、组成和共混工艺等对聚丙烯的韧性有很大的影响,适当选择与控制聚丙烯改性技术, 能够有效地达到预定的目的.下载本文

显示全文
专题