问
一、下一个交易日,该组合在99%置信水平下的VaR是多少?
二、该组合的边际VaR、成分VaR是多少?
三、如追加50万元的投资,该投资组合中的那只股票?组合的风险如何变化?
要求:100万元投资股票深发展(000001),求99%置信水平下1天的VaR=?
解:
一、历史模拟法
样本数据选择2004年至2005年每个交易日收盘价(共468个数据),利用EXCEL:
获取股票每日交易数据,首先计算其每日简单收益率,公式为:简单收益率=(Pt-Pt-1)/Pt-1,生成新序列,然后将序列中的数据按升序排列,找到对应的第468×1%=4.68个数据(谨慎起见,我们用第4个),即-5.45%。于是可得,
VaR=100×5.45%=5.45万。如图:
二、蒙特卡罗模拟法
(1)利用EVIEWS软件中的单位根检验(ADF检验)来判断股票价格序列的平稳性,结果如下:
| Null Hypothesis: SFZ has a unit root | ||||
| Exogenous: Constant | ||||
| Lag Length: 0 (Automatic based on SIC, MAXLAG=0) | ||||
| t-Statistic | Prob.* | |||
| Augmented Dickey-Fuller test statistic | -1.038226 | 0.7407 | ||
| Test critical values: | 1% level | -3.444128 | ||
| 5% level | -2.867509 | |||
| 10% level | -2.570012 | |||
| *MacKinnon (1996) one-sided p-values. | ||||
(2)利用EVIEWS软件中的相关性检验来判断序列的自相关性。选择价格序列的一阶差分(△P=Pt-Pt-1)和30天滞后期。结果如下:
| Date: 10/20/09 Time: 17:03 | ||||||
| Sample: 1/02/2004 12/30/2005 | ||||||
| Included observations: 467 | ||||||
| Autocorrelation | Partial Correlation | AC | PAC | Q-Stat | Prob | |
| .|. | | .|. | | 1 | -0.012 | -0.012 | 0.0660 | 0.797 |
| .|. | | .|. | | 2 | -0.020 | -0.020 | 0.2462 | 0.884 |
| .|. | | .|. | | 3 | 0.006 | 0.006 | 0.2637 | 0.967 |
| .|. | | .|. | | 4 | 0.044 | 0.044 | 1.1728 | 0.883 |
| *|. | | *|. | | 5 | -0.083 | -0.082 | 4.4453 | 0.487 |
| *|. | | *|. | | 6 | -0.070 | -0.071 | 6.7880 | 0.341 |
| .|. | | .|. | | 7 | -0.004 | -0.009 | 6.7948 | 0.451 |
| .|* | | .|* | | 8 | 0.078 | 0.075 | 9.6726 | 0.2 |
| .|. | | .|. | | 9 | 0.004 | 0.014 | 9.6787 | 0.377 |
| .|. | | .|. | | 10 | -0.023 | -0.022 | 9.9303 | 0.447 |
(3)通过上述检验,我们可以得出结论,深发展股票价格服从随机游走,即: Pt=Pt-1+εt。下面,我们利用EXCEL软件做蒙特卡罗模拟,模拟次数为10000次:
首先产生10000个随机整数,考虑到股市涨跌停板,以样本期最后一天的股价(6.14)为起点,即股价在下一天的波动范围为(-0.614,0.614)。故随机数的函数式为:RANDBETWEEN(-614,614)[用生成的随机数各除以1000,就是我们需要的股价随机变动数εt]。
然后计算模拟价格序列:模拟价格=P0+随机数÷1000
再将模拟后的价格按升序重新排列,找出对应99%的分位数,即10000×1%=100个交易日对应的数值:5.539,于是有
VaR=100×(5.539-6.14)÷6.14=9.79万
三、参数法(样本同历史模拟法)
(一)静态法:假设方差和均值都是恒定的
简单收益率的分布图:R=(Pt-Pt-1)/Pt-1
对数收益率的分布图:R=LN(Pt)-LN(Pt-1)
通过对简单收益率和对数收益率的统计分析可知,与正态分布相比,二者均呈现出“尖峰厚尾”的特征。相对而言,对数收益率更接近于正态分布。因此,采用对数收益率的统计结果,标准差为0.02197。根据VaR的计算公式可得:
VaR=2.33×0.02197×100=5.119万
(二)动态法:假设方差和均值随时间而变化
可以有多种不同的方法,下面简单举例:
1、简单移动平均法:
取30天样本,公式为:σ2=(ΣR2)÷30,通过EXCEL处理后结果为:
σ2=0.000211028,则有σ=0.0145
VaR=2.33×0.0145×100=3.379万
2、指数移动平均法:
借鉴RISKMETRICS技术,令衰减因子λ=0.94,在EVIEWS中做二次指数平滑,结果如下图:
| Date: 10/20/09 Time: 21:50 | ||||
| Sample: 1/05/2004 10/18/2005 | ||||
| Included observations: 467 | ||||
| Method: Double Exponential | ||||
| Original Series: SFZ4 | ||||
| Forecast Series: SFZ4SM | ||||
| Parameters: | Alpha | 0.9400 | ||
| Sum of Squared Residuals | 0.002756 | |||
| Root Mean Squared Error | 0.002429 | |||
| End of Period Levels: | Mean | 0.000165 | ||
| Trend | 9.24E-05 | |||
VaR=2.33×0.0128×100=2.982万
3、GARCH
通过观察发现,该股票收益率的波动具有明显的集聚现象,因而考虑其异方差性。对残差进行ARCH检验,结果表明存在着明显的ARCH效应
| ARCH Test: | ||||
| F-statistic | 11.76612 | Probability | 0.000657 | |
| Obs*R-squared | 11.52408 | Probability | 0.000687 | |
| Test Equation: | ||||
| Dependent Variable: RESID^2 | ||||
| Method: Least Squares | ||||
| Date: 10/20/09 Time: 23:19 | ||||
| Sample (adjusted): 1/07/2004 10/18/2005 | ||||
| Included observations: 465 after adjustments | ||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| C | 0.000402 | 5.75E-05 | 6.983555 | 0.0000 |
| RESID^2(-1) | 0.157127 | 0.045807 | 3.430177 | 0.0007 |
| R-squared | 0.024783 | Mean dependent var | 0.000478 | |
| Adjusted R-squared | 0.022677 | S.D. dependent var | 0.001159 | |
| S.E. of regression | 0.001146 | Akaike info criterion | -10.70047 | |
| Sum squared resid | 0.000608 | Schwarz criterion | -10.68266 | |
| Log likelihood | 24.860 | F-statistic | 11.76612 | |
| Durbin-Watson stat | 2.0220 | Prob(F-statistic) | 0.000657 | |
Rt=-0.051501 Rt-1 +εt
σt2=0.0000231+0.084672εt-1+0.866212σt-12
| Dependent Variable: SFZ2 | ||||
| Method: ML - ARCH (Marquardt) - Normal distribution | ||||
| Date: 10/20/09 Time: 23:13 | ||||
| Sample (adjusted): 1/06/2004 10/18/2005 | ||||
| Included observations: 466 after adjustments | ||||
| Convergence achieved after 14 iterations | ||||
| Variance backcast: ON | ||||
| GARCH = C(2) + C(3)*RESID(-1)^2 + C(4)*GARCH(-1) | ||||
| Coefficient | Std. Error | z-Statistic | Prob. | |
| SFZ2(-1) | -0.051501 | 0.049748 | -1.035249 | 0.3006 |
| Variance Equation | ||||
| C | 2.31E-05 | 6.45E-06 | 3.573752 | 0.0004 |
| RESID(-1)^2 | 0.084672 | 0.016245 | 5.212156 | 0.0000 |
| GARCH(-1) | 0.866212 | 0.020613 | 42.02172 | 0.0000 |
| R-squared | -0.002784 | Mean dependent var | -0.000801 | |
| Adjusted R-squared | -0.009295 | S.D. dependent var | 0.021941 | |
| S.E. of regression | 0.022043 | Akaike info criterion | -4.5787 | |
| Sum squared resid | 0.224484 | Schwarz criterion | -4.860214 | |
| Log likelihood | 1144.718 | Durbin-Watson stat | 1.9248 | |
软件给出了方差的预测值σ2=0.000470,则有σ=0.0217
VaR=2.33×0.0217×100=5.051万下载本文