视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
图形的平移、旋转、中心对称培优
2025-10-01 18:19:33 责编:小OO
文档
图形的平移、旋转和中心对称

1.如图,Rt△ABC中,∠ACB=90º,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为【    】

A.        B.        C.        D. 

2. 若函数的图像如图所示,则关于的不等式的解集为【    】

A.        B.        C.        D. 

3. 如图,在等腰中,,,在四边形中,,,为的中点,连接,.

⑴ 在图中画出关于点成中心对称的图形; 

⑵ 求证:;

⑶ 当___________时,.

4. 已知:如图1在中,,,点、分别为线段上两动点,若.探究线段、、三条线段之间的数量关系.

⑴ 猜想、、三条线段之间存在的数量关系式,并对你的猜想给予证明; 

⑵ 当动点在线段上,动点运动在线段延长线上时,如图2,其它条件不变,⑴中探究的结论是否发生改变?请说明你的猜想并给予证明.

 

5. 已知:在△ABC中,BC=a,AC=b,以AB为边作等边三角形ABD. 探究下列问题:

(1)如图1,当点D与点C位于直线AB的两侧时,a=b=3,且∠ACB=60°,则CD=             ;

(2)如图2,当点D与点C位于直线AB的同侧时,a=b=6,且∠ACB=90°,则CD=             ;

(3)如图3,当∠ACB变化,且点D与点C位于直线AB的两侧时,求 CD的最大值及相应的∠ACB的度数.

     

   

6. (2015•福州)如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是      .

7.(2012•青岛)如图,Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=1,将△ABC绕点C逆时针旋转至△A′B′C,使得点A′恰好落在AB上,连接BB′,则BB′的长度为      .

8. (2013•大连)将△ABC绕点B逆时针旋转α得到△DBE,DE的延长线与AC相交于点F,连接DA、BF.

(1)如图1,若∠ABC=α=60°,BF=AF.

①求证:DA∥BC;

②猜想线段DF、AF的数量关系,并证明你的猜想;

9.如图1,在△ABC中,∠A=36°,AB=AC,∠ABC的平分线BE交AC于E.

(1)求证:AE=BC;

(2)如图(2),过点E作EF∥BC交AB于F,将△AEF绕点A逆时针旋转角α(0°<α<144°)得到△AE′F′,连结CE′,BF′,求证:CE′=BF′;

(3)在(2)的旋转过程中是否存在CE′∥AB?若存在,求出相应的旋转角α;若不存在,请说明理由.

10. (1)如图1,在△ABC中,BA=BC,D,E是AC边上的两点,且满足∠DBE=∠ABC(0°<∠CBE<∠ABC).以点B为旋转中心,将△BEC按逆时针旋转∠ABC,得到△BE′A(点C与点A重合,点E到点E′处)连接DE′,

求证:DE′=DE.

(2)如图2,在△ABC中,BA=BC,∠ABC=90°,D,E是AC边上的两点,且满足∠DBE=∠ABC(0°<∠CBE<45°).

求证:DE2=AD2+EC2.

11.(2012•本溪)已知,在△ABC中,AB=AC.过A点的直线a从与边AC重合的位置开始绕点A按顺时针方向旋转角θ,直线a交BC边于点P(点P不与点B、点C重合),△BMN的边MN始终在直线a上(点M在点N的上方),且BM=BN,连接CN.

(1)当∠BAC=∠MBN=90°时,

①如图a,当θ=45°时,∠ANC的度数为      ;

②如图b,当θ≠45°时,①中的结论是否发生变化?说明理由;

(2)如图c,当∠BAC=∠MBN≠90°时,请直接写出∠ANC与∠BAC之间的数量关系,不必证明.

12.如图1,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若点B,P在直线a的异侧,BM⊥直线a于点M.CN⊥直线a于点N,连接PM,PN.

(1)延长MP交CN于点E(如图2).

①求证:△BPM≌△CPE;

②求证:PM=PN;

(2)若直线a绕点A旋转到图3的位置时,点B,P在直线a的同侧,其它条件不变,此时PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由;

(3)若直线a绕点A旋转到与BC边平行的位置时,其它条件不变,请直接判断四边形MBCN的形状及此时PM=PN还成立吗?不必说明理由.

 下载本文

显示全文
专题