视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
人教版数学四年级下册:鸡兔同笼问题 讲解及习题(含答案)
2025-10-02 12:25:44 责编:小OO
文档
   鸡兔同笼问题讲解及习题

   鸡兔同笼问题是按照题目的内容涉及到鸡与兔而命名的,它是一类有名的中国古算题。许多小学算术应用题,都可以转化为鸡兔同笼问题来加以计算。

    例1  小梅数她家的鸡与兔,数头有16个,数脚有44只。问:小梅家的鸡与兔各有多少只?

    分析:假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44—32=12(只)脚,出现这种情况的原因是把兔当作鸡了。

    如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只。因此只要算出12里面有几个2,就可以求出兔的只数。    ‘

    解:有兔(44—2×16)÷(4—2)=6(只),

    有鸡16—6=10(只)。

    答:有6只兔,10只鸡。

当然,我们也可以假设16只都是兔子,那么就应该有4×16=(只)脚,但实际上有44只脚,比假设的情况少了—44=20(只)脚,这是因为把鸡当作兔了。我们以鸡去换兔,每换一只,头的数目不变,脚数减少了4—2=2(只)。因此只要算出20里面有几个2,就可以求出鸡的只数。有鸡(4×16—44)÷(4—2)=10(只),有兔16—10=6(只)。

    由例1看出,解答鸡兔同笼问题通常采用假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔。因此这类问题也叫置换问题。

    例2  100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。问:大、小和尚各有多少人?

    分析与解:本题由中国古算名题“百僧分馍问题”演变而得。如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解。

    假设100人全是大和尚,那么共需馍300个,比实际多300—140=160(个)。现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3—1=2(个),因为160÷2=80,故小和尚有80人,大和尚有100—80=20(人)。同样,也可以假设100人都是小和尚,同学们不妨自己试试。

    在下面的例题中,我们只给出一种假设方法。

    例3  彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元。问:两种文化用品各买了多少套?

分析与解:我们设想有一只“怪鸡”有1个头11只脚,一种“怪兔”有1个头19只脚,它们共有16个头,280只脚。这样,就将买文化用品问题转换成鸡兔同笼问题了。

假设买了16套彩色文化用品,则共需19×16=304(元),比实际多304-280=24(元),现在用普通文化用品去换彩色文化用品,每换一套少用19—11=8(元),所以买普通文化用品  24÷8=3(套),买彩色文化用品  16-3=13(套)。

    例4  鸡、兔共100只,鸡脚比兔脚多20只。问:鸡、兔各多少只?

    分析:假设100只都是鸡,没有兔,那么就有鸡脚200只,而兔的脚数为零。这样鸡脚比兔脚多200只,而实际上只多20只,这说明假设的鸡脚比兔脚多的数比实际上多200-20=180(只)。

    现在以免换鸡,每换一只,鸡脚减少2只,兔脚增加4只,即鸡脚比兔脚多的脚数中就会减少4+2=6(只),而180÷6=30,因此有兔子30只,鸡100-30=70(只)。

    解:有兔(2×100—20)÷(2+4)=30(只),

       有鸡100-30=70(只)。  

                答:有鸡70只,兔30只。

    例5  现有大、小油瓶共50个,每个大瓶可装油4千克,每个小瓶可装油2千克,大瓶比小瓶共多装20千克。问:大、小瓶各有多少个?

分析:本题与例4非常类似,仿照例4的解法即可。

解:小瓶有(4×50—20)÷(4+2)=30(个),

    大瓶有50—30=20(个)。

    答:有大瓶20个,小瓶30个。

    例6  一批钢材,用小卡车装载要45辆,用大卡车装载只要36辆。已知每辆大卡车比每辆小卡车多装4吨,那么这批钢材有多少吨?

    分析:要算出这批钢材有多少吨,需要知道每辆大卡车或小卡车能装多少吨。

    利用假设法,假设只用36辆小卡车来装载这批钢材,因为每辆大卡车比每辆小卡车多装4吨,所以要剩下4×36=144(吨)。根据条件,要装完这144吨钢材还需要45—36=9(辆)小卡车。这样每辆小卡车能装144÷9=16(吨)。由此可求出这批钢材有多少吨。

    解:4×36÷(45—36)×45=720(吨)。

    答:这批钢材有720吨。

    例7  乐乐百货商店委托搬运站运送500只花瓶,双方商定每只运费0.24元,但如果发生损坏,那么每打破一只不仅不给运费,而且还要赔偿1.26元,结果搬运站共得运费115.5元。问:搬运过程打破了几只花瓶?

分析:假设500只花瓶在搬运过程中一只也没有打破,那么应得运费0.24×500=120(元)。实际上只得到115.5元,少得120—115.5二4.5(元)。搬运站每打破一只花瓶要损失0.24+1.26=1.5(元)。因此共打破花瓶4.5÷1.5=3(只)。

    解:(0.24×500-115.5)÷(0.24+1.26)=3(只)。

            答:共打破3只花瓶。

    例8  小乐与小喜一起跳绳,小喜先跳了2分钟,然后两人各跳了3分钟,一共跳了780下。已知小喜比小乐每分钟多跳12下,那么小喜比小乐共多跳了多少下?

    分析与解:利用假设法,假设小喜的跳绳速度减少到与小乐一样,那么两人跳的总数减少了12×(2+3)=60(下)。可求出小乐每分钟跳

    (780-60)÷(2+3+3)=90(下),

  小乐一共跳了90×3=270(下),因此小喜比小乐共多跳

780—270×2=240(下)。

练习题

    1.鸡、兔共有头100个,脚350只,鸡、兔各有多少只?

    2.学校有象棋、跳棋共26副,2人下一副象棋,6人下一副跳棋,恰好可供120个学生进行活动。问:象棋与跳棋各有多少副?

3.班级购买活页簿与日记本合计32本,花钱74元。活页簿每本L9元,日记本每本3.1元。问:买活页簿、日记本各几本?

    4.龟、鹤共有100个头,鹤腿比龟腿多20只。问:龟、鹤各几只?

    5.小蕾花40元钱买了14张贺年卡与明信片。贺年卡每张3元5角,明信片每张2元5角。问:贺年卡、明信片各买了几张?

    6.一个工人植树,晴天每天植树20棵,雨天每天植树12棵,他接连几天共植树112棵,平均每天植树14棵。问:这几天有几个雨天?

    7.振兴小学六年级举行数学竞赛,  共有20道试题。做对一题得5分,没做或做错一题都要扣3分。小建得了60分,那么他做对了几道题?

    8.有一批水果,用大筐80只可装运完,用小筐120只也可装运完。  已知每只大筐比每只小筐多装运20千克,那么这批水果有多少千克?

    9.蜘蛛有腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀。现有三种小虫共18只,有11腿和20对翅膀。问:每种小虫各有几只?

    10.鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚92只。问:鸡、兔各几只?下载本文

显示全文
专题