视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
初一数学压轴题
2025-10-02 18:48:38 责编:小OO
文档
一.解答题(共19小题)

1.(2013?扬州)如果10b=n,那么b为n的劳格数,记为b=d(n),由定义可知:10b=n与b=d(n)所表示的b、n两个量之间的同一关系.

(1)根据劳格数的定义,填空:d(10)=      ,d(10﹣2)=      ;

(2)劳格数有如下运算性质:若m、n为正数,则d(mn)=d(m)+d(n),d()=d(m)﹣d(n).

根据运算性质,填空:=      (a为正数),若d(2)=0.3010,则d(4)=      ,d(5)=      ,d(0.08)=      ;

(3)如表中与数x对应的劳格数d(x)有且只有两个是错误的,请找出错误的劳格数,说明理由并改正.

x1.5356891227
d(x)3a﹣b+c2a﹣ba+c1+a﹣b﹣c3﹣3a﹣3c4a﹣2b3﹣b﹣2c6a﹣3b
2.(2012?安庆一模)先阅读下列材料,再解答后面的问题.

一般地,若an=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为logab(即logab=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).

(1)计算以下各对数的值:log24=      ,log216=      ,log2=      .

(2)观察(1)中三数4、16、之间满足怎样的关系式,log24、log216、log2之间又满足怎样的关系式;

(3)猜想一般性的结论:logaM+logaN=      (a>0且a≠1,M>0,N>0),并根据幂的运算法则:am?an=am+n以及对数的含义证明你的猜想.

3.(2012?沈阳模拟)认真阅读材料,然后回答问题:

我们初中学习了多项式的运算法则,相应的,我们可以计算出多项式的展开式,如:(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=(a+b)2(a+b)=a3+3a2b+3ab2+b3,…

下面我们依次对(a+b)n展开式的各项系数进一步研究发现,当n取正整数时可以单独列成表中的形式:

上面的多项式展开系数表称为“杨辉三角形”;仔细观察“杨辉三角形”,用你发现的规律回答下列问题:

(1)多项式(a+b)n的展开式是一个几次几项式?并预测第三项的系数;

(2)请你预测一下多项式(a+b)n展开式的各项系数之和.

(3)结合上述材料,推断出多项式(a+b)n(n取正整数)的展开式的各项系数之和为S,(结果用含字母n的代数式表示).

4.(2009?佛山)阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.

例如:(x﹣1)2+3、(x﹣2)2+2x、(x﹣2)2+x2是x2﹣2x+4的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项﹣﹣见横线上的部分).

请根据阅读材料解决下列问题:(1)比照上面的例子,写出x2﹣4x+2三种不同形式的配方;(2)将a2+ab+b2配方(至少两种形式);(3)已知a2+b2+c2﹣ab﹣3b﹣2c+4=0,求a+b+c的值.

5.(2007?东营)根据以下10个乘积,回答问题:

11×29;12×28;13×27;14×26;15×25; 16×24;17×23;18×22;19×21;20×20.

(1)试将以上各乘积分别写成一个“□2﹣?2”(两数平方差)的形式,并写出其中一个的思考过程;

(2)将以上10个乘积按照从小到大的顺序排列起来;

(3)若用a1b1,a2b2,…,anbn表示n个乘积,其中a1,a2,a3,…,an,b1,b2,b3,…,bn为正数.试由(1)、(2)猜测一个一般性的结论.(不要求证明)

6.(2006?浙江)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”

(1)28和2012这两个数是“神秘数”吗?为什么?

(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?

(3)两个连续奇数的平方差(k取正数)是神秘数吗?为什么?

8.(2015?于洪区一模)如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.

(1)如果AB=AC,∠BAC=90°,

①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为      ,线段CF、BD的数量关系为      ;

②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;

(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.

9.(2015?菏泽)如图,已知∠ABC=90°,D是直线AB上的点,AD=BC.

(1)如图1,过点A作AF⊥AB,并截取AF=BD,连接DC、DF、CF,判断△CDF的形状并证明;

(2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,∠APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.

10.(2015?铁岭一模)已知:△ABC中,BD、CE分别是AC、AB边上的高,BQ=AC,点F在CE的延长线上,CF=AB,求证:AF⊥AQ.

11.(2013?庐阳区校级模拟)如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1).△ABD不动,

(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC(图2),证明:MB=MC.

(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.

(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.

12.(2012?昌平区模拟)(1)如图,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD.

求证:EF=BE+FD;

(2)如图,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?

(3)如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.

13.(2011?泰安)已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.

(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;

(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.

14.(2005?扬州)(本题有3小题,第(1)小题为必答题,满分5分;第(2)、(3)小题为选答题,其中,第(2)小题满分3分,第(3)小题满分6分,请从中任选1小题作答,如两题都答,以第(2)小题评分.)

在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.

(1)当直线MN绕点C旋转到图1的位置时,求证:

①△ADC≌△CEB;②DE=AD+BE;

(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;

(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.

注意:第(2)、(3)小题你选答的是第2小题.

15.(2012?淮安)阅读理解

如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重复部分;…;将余下部分沿∠BnAnC的平分线AnBn+1折叠,点Bn与点C重合,无论折叠多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.

小丽展示了确定∠BAC是△ABC的好角的两种情形.情形一:如图2,沿等腰三角形ABC顶角∠BAC的平分线AB1折叠,点B与点C重合;情形二:如图3,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合.

探究发现

(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是不是△ABC的好角?      (填“是”或“不是”).

(2)小丽经过三次折叠发现了∠BAC是△ABC的好角,请探究∠B与∠C(不妨设∠B>∠C)之间的等量关系.根据以上内容猜想:若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为      .

应用提升

(3)小丽找到一个三角形,三个角分别为15°、60°、105°,发现60°和105°的两个角都是此三角形的好角.

请你完成,如果一个三角形的最小角是4°,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.

16.(2011?房山区一模)已知:等边三角形ABC

(1)如图1,P为等边△ABC外一点,且∠BPC=120°.试猜想线段BP、PC、AP之间的数量关系,并证明你的猜想;

(2)如图2,P为等边△ABC内一点,且∠APD=120°.求证:PA+PD+PC>BD.

17.(2010?丹东)如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).

(1)如图1,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE上?都请直接写出结论,不必证明或说明理由;

(2)如图2,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图2证明;若不成立,请说明理由;

(3)若点M在点C右侧时,请你在图3中画出相应的图形,并判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请直接写出结论,不必证明或说明理由.

18.(2006?西岗区)如图,以△ABC的边AB、AC为直角边向外作等腰直角△ABE和△ACD,M是BC的中点,请你探究线段DE与AM之间的关系.

说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);

(2)在你经历说明(1)的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明.

①画出将△ACM绕某一点顺时针旋转180°后的图形;

②∠BAC=90°(如图)

附加题:如图,若以△ABC的边AB、AC为直角边,向内作等腰直角△ABE和△ACD,其它条件不变,试探究线段DE与AM之间的关系.

19.(2006?大连)如图1,Rt△ABC中AB=AC,点D、E是线段AC上两动点,且AD=EC,AM垂直BD,垂足为M,AM的延长线交BC于点N,直线BD与直线NE相交于点F.试判断△DEF的形状,并加以证明.

说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);(2)在你经历说明(1)的过程之后,可以从下列①、②中选取一个补充或者更换已知条件,完成你的证明.

1、画出将△BAD沿BA方向平移BA长,然后顺时针旋转90°后图形;

2、点K在线段BD上,且四边形AKNC为等腰梯形(AC∥KN,如图2).

附加题:如图3,若点D、E是直线AC上两动点,其他条件不变,试判断△DEF的形状,并说明理由.

参与试题解析

一.解答题(共19小题)

1.(2013?扬州)如果10b=n,那么b为n的劳格数,记为b=d(n),由定义可知:10b=n与b=d(n)所表示的b、n两个量之间的同一关系.

(1)根据劳格数的定义,填空:d(10)= 1 ,d(10﹣2)= ﹣2 ;

(2)劳格数有如下运算性质:

若m、n为正数,则d(mn)=d(m)+d(n),d()=d(m)﹣d(n).

根据运算性质,填空:

= 3 (a为正数),若d(2)=0.3010,则d(4)= 0.6020 ,d(5)= 0.6990 ,d(0.08)= ﹣1.0970 ;

(3)如表中与数x对应的劳格数d(x)有且只有两个是错误的,请找出错误的劳格数,说明理由并改正.

x1.5356891227
d(x)3a﹣b+c2a﹣ba+c1+a﹣b﹣c3﹣3a﹣3c4a﹣2b3﹣b﹣2c6a﹣3b
【考点】整式的混合运算;反证法.

【专题】压轴题.

【分析】(1)根据定义可知,d(10)和d(10﹣2)就是指10的指数,据此即可求解;

(2)根据d(a3)=d(a?a?a)=d(a)+d(a)+d(a)即可求得的值;

(3)通过9=32,27=33,可以判断d(3)是否正确,同理以依据5=10÷2,假设d(5)正确,可以求得d(2)的值,即可通过d(8),d(12)作出判断.

【解答】解:(1)d(10)=1,d(10﹣2)=﹣2;

故答案为:1,﹣2;

(2)==3;

因为d(2)=0.3010

故d(4)=d(2)+d(2)=0.6020,

d(5)=d(10)﹣d(2)=1﹣0.3010=0.6990,

d(0.08)=d(8×10﹣2)=3d(2)+d(10﹣2)=﹣1.0970;

(3)若d(3)≠2a﹣b,则d(9)=2d(3)≠4a﹣2b,

d(27)=3d(3)≠6a﹣3b,

从而表中有三个劳格数是错误的,与题设矛盾,

∴d(3)=2a﹣b,

若d(5)≠a+c,则d(2)=1﹣d(5)≠1﹣a﹣c,

∴d(8)=3d(2)≠3﹣3a﹣3c,

d(6)=d(3)+d(2)≠1+a﹣b﹣c,

表中也有三个劳格数是错误的,与题设矛盾.

∴d(5)=a+c.

∴表中只有d(1.5)和d(12)的值是错误的,应纠正为:

d(1.5)=d(3)+d(5)﹣1=3a﹣b+c﹣1,

d(12)=d(3)+2d(2)=2﹣b﹣2c.

【点评】本题考查整式的运算,正确理解规定的新的运算法则是关键.

2.(2012?安庆一模)先阅读下列材料,再解答后面的问题.

一般地,若an=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为logab(即logab=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).

(1)计算以下各对数的值:log24= 2 ,log216= 4 ,log2= 6 .

(2)观察(1)中三数4、16、之间满足怎样的关系式,log24、log216、log2之间又满足怎样的关系式;

(3)猜想一般性的结论:logaM+logaN= loga(MN) (a>0且a≠1,M>0,N>0),并根据幂的运算法则:am?an=am+n以及对数的含义证明你的猜想.

【考点】同底数幂的乘法.

【专题】压轴题;新定义.

【分析】(1)根据材料叙述,结合22=4,24=16,26=即可得出答案;

(2)根据(1)的答案可得出log24、log216、log2之间满足的关系式;

(3)设logaM=b1,logaN=b2,则ab1=M,ab2=N,分别表示出MN及b1+b2的值,即可得出猜想.

【解答】解:(1)log24=2,log216=4,log2=6;

(2)log24+log216=log2;

(3)猜想logaM+logaN=loga(MN).

证明:设logaM=b1,logaN=b2,则ab1=M,ab2=N,

故可得MN=ab1?ab2=ab1+b2,b1+b2=loga(MN),

即logaM+logaN=loga(MN).

【点评】本题考查了同底数幂的乘法运算,题目出得比较新颖,解题思路以材料的形式给出,需要同学们仔细阅读,理解并灵活运用所给的信息.

3.(2012?沈阳模拟)认真阅读材料,然后回答问题:

我们初中学习了多项式的运算法则,相应的,我们可以计算出多项式的展开式,如:(a+b)1=a+b,(a+b)2=a2+2ab+b2,(a+b)3=(a+b)2(a+b)=a3+3a2b+3ab2+b3,…

下面我们依次对(a+b)n展开式的各项系数进一步研究发现,当n取正整数时可以单独列成表中的形式:

上面的多项式展开系数表称为“杨辉三角形”;仔细观察“杨辉三角形”,用你发现的规律回答下列问题:

(1)多项式(a+b)n的展开式是一个几次几项式?并预测第三项的系数;

(2)请你预测一下多项式(a+b)n展开式的各项系数之和.

(3)结合上述材料,推断出多项式(a+b)n(n取正整数)的展开式的各项系数之和为S,(结果用含字母n的代数式表示).

【考点】完全平方公式.

【专题】压轴题;阅读型;规律型.

【分析】(1)由题意可求得当n=1,2,3,4,…时,多项式(a+b)n的展开式是一个几次几项式,第三项的系数是多少,然后找规律,即可求得答案;

(2)首先求得当n=1,2,3,4…时,多项式(a+b)n展开式的各项系数之和,即可求得答案;

(3)结合(2),即可推断出多项式(a+b)n(n取正整数)的展开式的各项系数之和.

【解答】解:(1)∵当n=1时,多项式(a+b)1的展开式是一次二项式,此时第三项的系数为:0=,

当n=2时,多项式(a+b)2的展开式是二次三项式,此时第三项的系数为:1=,

当n=3时,多项式(a+b)3的展开式是三次四项式,此时第三项的系数为:3=,

当n=4时,多项式(a+b)4的展开式是四次五项式,此时第三项的系数为:6=,

∴多项式(a+b)n的展开式是一个n次n+1项式,第三项的系数为:;

(2)预测一下多项式(a+b)n展开式的各项系数之和为:2n;

(3)∵当n=1时,多项式(a+b)1展开式的各项系数之和为:1+1=2=21,

当n=2时,多项式(a+b)2展开式的各项系数之和为:1+2+1=4=22,

当n=3时,多项式(a+b)3展开式的各项系数之和为:1+3+3+1=8=23,

当n=4时,多项式(a+b)4展开式的各项系数之和为:1+4+6+4+1=16=24,

∴多项式(a+b)n展开式的各项系数之和:S=2n.

【点评】此题属于规律性、阅读性题目.此题难度较大,由特殊到一般的归纳方法的应用是解此题的关键.

4.(2009?佛山)阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫做配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.

例如:(x﹣1)2+3、(x﹣2)2+2x、(x﹣2)2+x2是x2﹣2x+4的三种不同形式的配方(即“余项”分别是常数项、一次项、二次项﹣﹣见横线上的部分).

请根据阅读材料解决下列问题:

(1)比照上面的例子,写出x2﹣4x+2三种不同形式的配方;

(2)将a2+ab+b2配方(至少两种形式);

(3)已知a2+b2+c2﹣ab﹣3b﹣2c+4=0,求a+b+c的值.

【考点】完全平方公式.

【专题】压轴题;阅读型.

【分析】(1)(2)本题考查对完全平方公式的灵活应用能力,由题中所给的已知材料可得x2﹣4x+2和a2+ab+b2的配方也可分别常数项、一次项、二次项三种不同形式;

(3)通过配方后,求得a,b,c的值,再代入代数式求值.

【解答】解:(1)x2﹣4x+2的三种配方分别为:

x2﹣4x+2=(x﹣2)2﹣2,

x2﹣4x+2=(x+)2﹣(2+4)x,

x2﹣4x+2=(x﹣)2﹣x2;

(2)a2+ab+b2=(a+b)2﹣ab,

a2+ab+b2=(a+b)2+b2;

(3)a2+b2+c2﹣ab﹣3b﹣2c+4,

=(a2﹣ab+b2)+(b2﹣3b+3)+(c2﹣2c+1),

=(a2﹣ab+b2)+(b2﹣4b+4)+(c2﹣2c+1),

=(a﹣b)2+(b﹣2)2+(c﹣1)2=0,

从而有a﹣b=0,b﹣2=0,c﹣1=0,

即a=1,b=2,c=1,

∴a+b+c=4.

【点评】本题考查了根据完全平方公式:a2±2ab+b2=(a±b)2进行配方的能力.

5.(2007?东营)根据以下10个乘积,回答问题:

11×29;12×28;13×27;14×26;15×25;

16×24;17×23;18×22;19×21;20×20.

(1)试将以上各乘积分别写成一个“□2﹣?2”(两数平方差)的形式,并写出其中一个的思考过程;

(2)将以上10个乘积按照从小到大的顺序排列起来;

(3)若用a1b1,a2b2,…,anbn表示n个乘积,其中a1,a2,a3,…,an,b1,b2,b3,…,bn为正数.试由(1)、(2)猜测一个一般性的结论.(不要求证明)

【考点】平方差公式.

【专题】压轴题.

【分析】利用两数的和与这两数的差的积,就是它们的平方差.如11×29;可想几加几等于29,几减几等于11,可得20+9和20﹣9,可得11×29=202﹣92,同理思考其它的.

【解答】解:(1)11×29=202﹣92;12×28=202﹣82;13×27=202﹣72;

14×26=202﹣62;15×25=202﹣52;16×24=202﹣42;

17×23=202﹣32;18×22=202﹣22;19×21=202﹣12;

20×20=202﹣02.(4分)

例如,11×29;假设11×29=□2﹣○2,

因为□2﹣○2=(□+○)(□﹣○);

所以,可以令□﹣○=11,□+○=29.

解得,□=20,○=9.故11×29=202﹣92.(5分)

(或11×29=(20﹣9)(20+9)=202﹣92.5分)

(2)这10个乘积按照从小到大的顺序依次是:11×29<12×28<13×27<14×26<15×25<16×24<17×23<18×22<19×21<20×20.(7分)

(3)①若a+b=40,a、b是自然数,则ab≤202=400.(8分)

②若a+b=40,则ab≤202=400.(8分)

③若a+b=m,a、b是自然数,则ab≤.(9分)

④若a+b=m,则ab≤.(9分)

⑤若a1+b1=a2+b2=a3+b3=an+bn=40.且

|a1﹣b1|≥|a2﹣b2|≥|a3﹣b3|≥≥|an﹣bn|,

则a1b1≤a2b2≤a3b3≤≤anbn.(10分)

⑥若a1+b1=a2+b2=a3+b3=an+bn=m.且

|a1﹣b1|≥|a2﹣b2|≥|a3﹣b3|≥…≥|an﹣bn|,

则a1b1≤a2b2≤a3b3≤…≤anbn.(10分)

说明:给出结论①或②之一的得(1分);给出结论③或④之一的得(2分);

给出结论⑤或⑥之一的得(3分).

【点评】此题主要考查了乘法的平方差公式.即两个数的和与这两个数的差的积等于这两个数的平方差,这个公式就叫做乘法的平方差公式.

6.(2006?浙江)如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”

(1)28和2012这两个数是“神秘数”吗?为什么?

(2)设两个连续偶数为2k+2和2k(其中k取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?

(3)两个连续奇数的平方差(k取正数)是神秘数吗?为什么?

【考点】平方差公式.

【专题】压轴题;新定义.

【分析】(1)试着把28、2012写成平方差的形式,解方程即可判断是否是神秘数;

(2)化简两个连续偶数为2k+2和2k的差,再判断;

(3)设两个连续奇数为2k+1和2k﹣1,则(2k+1)2﹣(2k﹣1)2=8k=4×2k,即可判断两个连续奇数的平方差不是神秘数.

【解答】解:(1)设28和2012都是“神秘数”,设28是x和x﹣2两数的平方差得到,

则x2﹣(x﹣2)2=28,

解得:x=8,∴x﹣2=6,

即28=82﹣62,

设2012是y和y﹣2两数的平方差得到,

则y2﹣(y﹣2)2=2012,

解得:y=504,

y﹣2=502,

即2012=5042﹣5022,

所以28,2012都是神秘数.

(2)(2k+2)2﹣(2k)2=(2k+2﹣2k)(2k+2+2k)=4(2k+1),

∴由2k+2和2k构造的神秘数是4的倍数,且是奇数倍.

(3)设两个连续奇数为2k+1和2k﹣1,

则(2k+1)2﹣(2k﹣1)2=8k=4×2k,

即:两个连续奇数的平方差是4的倍数,是偶数倍,不满足连续偶数的神秘数为4的奇数倍这一条件.

∴两个连续奇数的平方差不是神秘数.

【点评】此题首先考查了阅读能力、探究推理能力.对知识点的考查,主要是平方差公式的灵活应用.

7.(2007?淄博)根据以下10个乘积,回答问题:

11×29;  12×28;   13×27;   14×26;   15×25;

16×24;  17×23;   18×22;   19×21;   20×20.

(1)试将以上各乘积分别写成一个“□2﹣○2”(两数平方差)的形式,并写出其中一个的思考过程;

(2)将以上10个乘积按照从小到大的顺序排列起来;

(3)试由(1)、(2)猜测一个一般性的结论.(不要求证明)

【考点】整式的混合运算;绝对值.

【专题】压轴题;规律型.

【分析】(1)根据要求求出两数的平均数,再写成平方差的形式即可.

(2)减去的数越大,乘积就越小,据此规律填写即可.

(3)根据排列的顺序可得,两数相差越大,积越小.

【解答】解:(1)11×29=202﹣92;12×28=202﹣82;13×27=202﹣72;

14×26=202﹣62;15×25=202﹣52;16×24=202﹣42;

17×23=202﹣32;18×22=202﹣22;19×21=202﹣12;

20×20=202﹣02    …(4分)

例如,11×29;假设11×29=□2﹣○2,

因为□2﹣○2=(□+○)(□﹣○);

所以,可以令□﹣○=11,□+○=29.

解得,□=20,○=9.故11×29=202﹣92.

(或11×29=(20﹣9)(20+9)=202﹣92

(2)这10个乘积按照从小到大的顺序依次是:11×29<12×28<13×27<14×26<15×25<16×24<17×23<18×22<19×21<20×20

(3)①若a+b=40,a,b是自然数,则ab≤202=400.

②若a+b=40,则ab≤202=400.     …(8分)

③若a+b=m,a,b是自然数,则ab≤.

④若a+b=m,则ab≤.

⑤若a,b的和为定值,则ab的最大值为.

⑥若a1+b1=a2+b2=a3+b3=…=an+bn=40.且

|a1﹣b1|≥|a2﹣b2|≥|a3﹣b3|≥…≥|an﹣bn|,

则 a1b1≤a2b2≤a3b3≤…≤anbn.       …(10分)

⑦若a1+b1=a2+b2=a3+b3=…=an+bn=m.且

|a1﹣b1|≥|a2﹣b2|≥|a3﹣b3|≥…≥|an﹣bn|,

则a1b1≤a2b2≤a3b3≤…≤anbn.

⑧若a+b=m,

a,b差的绝对值越大,则它们的积就越小.

说明:给出结论①或②之一的得(1分);给出结论③、④或⑤之一的得(2分);

给出结论⑥、⑦或⑧之一的得(3分).

【点评】本题主要考查整式的混合运算,找出规律是解答本题的关键.

8.(2015?于洪区一模)如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.

(1)如果AB=AC,∠BAC=90°,

①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为 垂直 ,线段CF、BD的数量关系为 相等 ;

②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;

(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.

【考点】全等三角形的判定与性质.

【专题】压轴题;开放型.

【分析】(1)当点D在BC的延长线上时①的结论仍成立.由正方形ADEF的性质可推出△DAB≌△FAC,所以CF=BD,∠ACF=∠ABD.结合∠BAC=90°,AB=AC,得到∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.

(2)当∠ACB=45°时,过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,可推出∠ACB=∠AGC,所以AC=AG,由(1)①可知CF⊥BD.

【解答】证明:(1)①正方形ADEF中,AD=AF,

∵∠BAC=∠DAF=90°,

∴∠BAD=∠CAF,

又∵AB=AC,

∴△DAB≌△FAC,

∴CF=BD,∠B=∠ACF,

∴∠ACB+∠ACF=90°,即CF⊥BD.

②当点D在BC的延长线上时①的结论仍成立.

由正方形ADEF得AD=AF,∠DAF=90度.

∵∠BAC=90°,

∴∠DAF=∠BAC,

∴∠DAB=∠FAC,

又∵AB=AC,

∴△DAB≌△FAC,

∴CF=BD,∠ACF=∠ABD.

∵∠BAC=90°,AB=AC,

∴∠ABC=45°,

∴∠ACF=45°,

∴∠BCF=∠ACB+∠ACF=90度.

即CF⊥BD.

(2)当∠ACB=45°时,CF⊥BD(如图).

理由:过点A作AG⊥AC交CB的延长线于点G,

则∠GAC=90°,

∵∠ACB=45°,∠AGC=90°﹣∠ACB,

∴∠AGC=90°﹣45°=45°,

∴∠ACB=∠AGC=45°,

∴AC=AG,

∵∠DAG=∠FAC(同角的余角相等),AD=AF,

∴△GAD≌△CAF,

∴∠ACF=∠AGC=45°,

∠BCF=∠ACB+∠ACF=45°+45°=90°,即CF⊥BC.

【点评】本题考查三角形全等的判定和直角三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.

9.(2015?菏泽)如图,已知∠ABC=90°,D是直线AB上的点,AD=BC.

(1)如图1,过点A作AF⊥AB,并截取AF=BD,连接DC、DF、CF,判断△CDF的形状并证明;

(2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,∠APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.

【考点】全等三角形的判定与性质.

【专题】压轴题.

【分析】(1)利用SAS证明△AFD和△BDC全等,再利用全等三角形的性质得出FD=DC,即可判断三角形的形状;

(2)作AF⊥AB于A,使AF=BD,连结DF,CF,利用SAS证明△AFD和△BDC全等,再利用全等三角形的性质得出FD=DC,∠FDC=90°,即可得出∠FCD=∠APD=45°.

【解答】解:(1)△CDF是等腰直角三角形,理由如下:

∵AF⊥AD,∠ABC=90°,

∴∠FAD=∠DBC,

在△FAD与△DBC中,

∴△FAD≌△DBC(SAS),

∴FD=DC,

∴△CDF是等腰三角形,

∵△FAD≌△DBC,

∴∠FDA=∠DCB,

∵∠BDC+∠DCB=90°,

∴∠BDC+∠FDA=90°,

∴△CDF是等腰直角三角形;

(2)作AF⊥AB于A,使AF=BD,连结DF,CF,如图,

∵AF⊥AD,∠ABC=90°,

∴∠FAD=∠DBC,

在△FAD与△DBC中,

∴△FAD≌△DBC(SAS),

∴FD=DC,

∴△CDF是等腰三角形,

∵△FAD≌△DBC,

∴∠FDA=∠DCB,

∵∠BDC+∠DCB=90°,

∴∠BDC+∠FDA=90°,

∴△CDF是等腰直角三角形,

∴∠FCD=45°,

∵AF∥CE,且AF=CE,

∴四边形AFCE是平行四边形,

∴AE∥CF,

∴∠APD=∠FCD=45°.

【点评】此题考查了全等三角形的判定与性质的运用,平行四边形的判定及性质的运用,等腰直角三角形的判定及性质的运用.解答时证明三角形全等是关键.

10.(2015?铁岭一模)已知:△ABC中,BD、CE分别是AC、AB边上的高,BQ=AC,点F在CE的延长线上,CF=AB,求证:AF⊥AQ.

【考点】全等三角形的判定与性质.

【专题】证明题;压轴题.

【分析】首先证明出∠ABD=∠ACE,再有条件BQ=AC,CF=AB可得△ABQ≌△ACF,进而得到∠F=∠BAQ,然后再根据∠F+∠FAE=90°,可得∠BAQ+∠FAE═90°,进而证出AF⊥AQ.

【解答】证明:∵BD、CE分别是AC、AB边上的高,

∴∠ADB=90°,∠AEC=90°,

∴∠ABQ+∠BAD=90°,∠BAC+∠ACE=90°,

∴∠ABD=∠ACE,

在△ABQ和△ACF中,

∴△ABQ≌△ACF(SAS),

∴∠F=∠BAQ,

∵∠F+∠FAE=90°,

∴∠BAQ+∠FAE═90°,

∴AF⊥AQ.

【点评】此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形的判定方法,以及全等三角形的性质定理.

11.(2013?庐阳区校级模拟)如图,将两个全等的直角三角形△ABD、△ACE拼在一起(图1).△ABD不动,

(1)若将△ACE绕点A逆时针旋转,连接DE,M是DE的中点,连接MB、MC(图2),证明:MB=MC.

(2)若将图1中的CE向上平移,∠CAE不变,连接DE,M是DE的中点,连接MB、MC(图3),判断并直接写出MB、MC的数量关系.

(3)在(2)中,若∠CAE的大小改变(图4),其他条件不变,则(2)中的MB、MC的数量关系还成立吗?说明理由.

【考点】全等三角形的判定与性质.

【专题】证明题;几何综合题;压轴题.

【分析】(1)连接AM,根据全等三角形的对应边相等可得AD=AE,AB=AC,全等三角形对应角相等可得∠BAD=∠CAE,再根据等腰三角形三线合一的性质得到∠MAD=∠MAE,然后利用“边角边”证明△ABM和△ACM全等,根据全等三角形对应边相等即可得证;

(2)延长DB、AE相交于E′,延长EC交AD于F,根据等腰三角形三线合一的性质得到BD=BE′,然后求出MB∥AE′,再根据两直线平行,内错角相等求出∠MBC=∠CAE,同理求出MC∥AD,根据两直线平行,同位角相等求出∠BCM=∠BAD,然后求出∠MBC=∠BCM,再根据等角对等边即可得证;

(3)延长BM交CE于F,根据两直线平行,内错角相等可得∠MDB=∠MEF,∠MBD=∠MFE,然后利用“角角边”证明△MDB和△MEF全等,根据全等三角形对应边相等可得MB=MF,然后根据直角三角形斜边上的中线等于斜边的一半证明即可.

【解答】证明:(1)如图2,连接AM,由已知得△ABD≌△ACE,

∴AD=AE,AB=AC,∠BAD=∠CAE,

∵MD=ME,

∴∠MAD=∠MAE,

∴∠MAD﹣∠BAD=∠MAE﹣∠CAE,

即∠BAM=∠CAM,

在△ABM和△ACM中,,

∴△ABM≌△ACM(SAS),

∴MB=MC;

(2)MB=MC.

理由如下:如图3,延长DB、AE相交于E′,延长EC交AD于F,

∴BD=BE′,CE=CF,

∵M是ED的中点,B是DE′的中点,

∴MB∥AE′,

∴∠MBC=∠CAE,

同理:MC∥AD,

∴∠BCM=∠BAD,

∵∠BAD=∠CAE,

∴∠MBC=∠BCM,

∴MB=MC;

(3)MB=MC还成立.

如图4,延长BM交CE于F,

∵CE∥BD,

∴∠MDB=∠MEF,∠MBD=∠MFE,

又∵M是DE的中点,

∴MD=ME,

在△MDB和△MEF中,,

∴△MDB≌△MEF(AAS),

∴MB=MF,

∵∠ACE=90°,

∴∠BCF=90°,

∴MB=MC.

【点评】本题考查了全等三角形的判定与性质,等腰三角形三线合一的性质,等角对等边的性质,直角三角形斜边上的中线等于斜边的一半的性质,以及三角形的中位线定理,综合性较强,但难度不大,作辅助线构造出等腰三角形或全等三角形是解题的关键.

12.(2012?昌平区模拟)(1)如图,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD.

求证:EF=BE+FD;

(2)如图,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?

(3)如图,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.

【考点】全等三角形的判定与性质.

【专题】证明题;压轴题;探究型.

【分析】(1)可通过构建全等三角形来实现线段间的转换.延长EB到G,使BG=DF,连接AG.目的就是要证明三角形AGE和三角形AEF全等将EF转换成GE,那么这样EF=BE+DF了,于是证明两组三角形全等就是解题的关键.三角形ABE和AEF中,只有一条公共边AE,我们就要通过其他的全等三角形来实现,在三角形ABG和AFD中,已知了一组直角,BG=DF,AB=AD,因此两三角形全等,那么AG=AF,∠1=∠2,那么∠1+∠3=∠2+∠3=∠EAF=∠BAD.由此就构成了三角形ABE和AEF全等的所有条件(SAS),那么就能得出EF=GE了.

(2)思路和作辅助线的方法与(1)完全一样,只不过证明三角形ABG和ADF全等中,证明∠ABG=∠ADF时,用到的等角的补角相等,其他的都一样.因此与(1)的结果完全一样.

(3)按照(1)的思路,我们应该通过全等三角形来实现相等线段的转换.就应该在BE上截取BG,使BG=DF,连接AG.根据(1)的证法,我们可得出DF=BG,GE=EF,那么EF=GE=BE﹣BG=BE﹣DF.所以(1)的结论在(3)的条件下是不成立的.

【解答】证明:(1)延长EB到G,使BG=DF,连接AG.

∵∠ABG=∠ABC=∠D=90°,AB=AD,

∴△ABG≌△ADF.

∴AG=AF,∠1=∠2.

∴∠1+∠3=∠2+∠3=∠EAF=∠BAD.

∴∠GAE=∠EAF.

又AE=AE,

∴△AEG≌△AEF.

∴EG=EF.

∵EG=BE+BG.

∴EF=BE+FD

(2)(1)中的结论EF=BE+FD仍然成立.

(3)结论EF=BE+FD不成立,应当是EF=BE﹣FD.

证明:在BE上截取BG,使BG=DF,连接AG.

∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,

∴∠B=∠ADF.

∵AB=AD,

∴△ABG≌△ADF.

∴∠BAG=∠DAF,AG=AF.

∴∠BAG+∠EAD=∠DAF+∠EAD

=∠EAF=∠BAD.

∴∠GAE=∠EAF.

∵AE=AE,

∴△AEG≌△AEF.

∴EG=EF

∵EG=BE﹣BG

∴EF=BE﹣FD.

【点评】本题考查了三角形全等的判定和性质;本题中通过全等三角形来实现线段的转换是解题的关键,没有明确的全等三角形时,要通过辅助线来构建与已知和所求条件相关联全等三角形.

13.(2011?泰安)已知:在△ABC中,AC=BC,∠ACB=90°,点D是AB的中点,点E是AB边上一点.

(1)直线BF垂直于直线CE于点F,交CD于点G(如图1),求证:AE=CG;

(2)直线AH垂直于直线CE,垂足为点H,交CD的延长线于点M(如图2),找出图中与BE相等的线段,并证明.

【考点】全等三角形的判定与性质;等腰直角三角形.

【专题】几何综合题;压轴题.

【分析】(1)首先根据点D是AB中点,∠ACB=90°,可得出∠ACD=∠BCD=45°,判断出△AEC≌△CGB,即可得出AE=CG,

(2)根据垂直的定义得出∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,再根据AC=BC,∠ACM=∠CBE=45°,得出△BCE≌△CAM,进而证明出BE=CM.

【解答】(1)证明:∵点D是AB中点,AC=BC,

∠ACB=90°,

∴CD⊥AB,∠ACD=∠BCD=45°,

∴∠CAD=∠CBD=45°,

∴∠CAE=∠BCG,

又∵BF⊥CE,

∴∠CBG+∠BCF=90°,

又∵∠ACE+∠BCF=90°,

∴∠ACE=∠CBG,

在△AEC和△CGB中,

∴△AEC≌△CGB(ASA),

∴AE=CG,

(2)解:BE=CM.

证明:∵CH⊥HM,CD⊥ED,

∴∠CMA+∠MCH=90°,∠BEC+∠MCH=90°,

∴∠CMA=∠BEC,

又∵∠ACM=∠CBE=45°,

在△BCE和△CAM中,,

∴△BCE≌△CAM(AAS),

∴BE=CM.

【点评】本题主要考查了全等三角形的判定方法以及全等三角形对应边相等的性质,难度适中.

14.(2005?扬州)(本题有3小题,第(1)小题为必答题,满分5分;第(2)、(3)小题为选答题,其中,第(2)小题满分3分,第(3)小题满分6分,请从中任选1小题作答,如两题都答,以第(2)小题评分.)

在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.

(1)当直线MN绕点C旋转到图1的位置时,求证:

①△ADC≌△CEB;②DE=AD+BE;

(2)当直线MN绕点C旋转到图2的位置时,求证:DE=AD﹣BE;

(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE具有怎样的等量关系?请写出这个等量关系,并加以证明.

注意:第(2)、(3)小题你选答的是第2小题.

【考点】全等三角形的判定与性质.

【专题】证明题;压轴题;探究型.

【分析】(1)根据已知可利用AAS证明①△ADC≌△CEB,由此可证②DE=AD+BE;

(2)根据已知可利用AAS证明△ADC≌△CEB,由此可证DE=AD﹣BE;

(3)根据已知可利用AAS证明△ADC≌△CEB,由此可证DE=BE﹣AD.

【解答】证明:(1)①∵∠ADC=∠ACB=∠BEC=90°,

∴∠CAD+∠ACD=90°,∠BCE+∠CBE=90°,∠ACD+∠BCE=90°.

∴∠CAD=∠BCE.

∵AC=BC,

∴△ADC≌△CEB.

②∵△ADC≌△CEB,

∴CE=AD,CD=BE.

∴DE=CE+CD=AD+BE.

解:(2)∵∠ADC=∠CEB=∠ACB=90°,

∴∠ACD=∠CBE.

又∵AC=BC,

∴△ACD≌△CBE.

∴CE=AD,CD=BE.

∴DE=CE﹣CD=AD﹣BE.

(3)当MN旋转到图3的位置时,AD、DE、BE所满足的等量关系是DE=BE﹣AD(或AD=BE﹣DE,BE=AD+DE等).

∵∠ADC=∠CEB=∠ACB=90°,

∴∠ACD=∠CBE,

又∵AC=BC,

∴△ACD≌△CBE,

∴AD=CE,CD=BE,

∴DE=CD﹣CE=BE﹣AD.

【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,再根据全等三角形对应边相等得出结论.

15.(2012?淮安)阅读理解

如图1,△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重复部分;…;将余下部分沿∠BnAnC的平分线AnBn+1折叠,点Bn与点C重合,无论折叠多少次,只要最后一次恰好重合,∠BAC是△ABC的好角.

小丽展示了确定∠BAC是△ABC的好角的两种情形.情形一:如图2,沿等腰三角形ABC顶角∠BAC的平分线AB1折叠,点B与点C重合;情形二:如图3,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合.

探究发现

(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是不是△ABC的好角? 是 (填“是”或“不是”).

(2)小丽经过三次折叠发现了∠BAC是△ABC的好角,请探究∠B与∠C(不妨设∠B>∠C)之间的等量关系.根据以上内容猜想:若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为 ∠B=n∠C .

应用提升

(3)小丽找到一个三角形,三个角分别为15°、60°、105°,发现60°和105°的两个角都是此三角形的好角.

请你完成,如果一个三角形的最小角是4°,试求出三角形另外两个角的度数,使该三角形的三个角均是此三角形的好角.

【考点】翻折变换(折叠问题).

【专题】压轴题;规律型.

【分析】(1)在小丽展示的情形二中,如图3,根据根据三角形的外角定理、折叠的性质推知∠B=2∠C;

(2)根据折叠的性质、根据三角形的外角定理知∠A1A2B2=∠C+∠A2B2C=2∠C;

根据四边形的外角定理知∠BAC+2∠B﹣2C=180°①,根据三角形ABC的内角和定理知∠BAC+∠B+∠C=180°②,由①②可以求得∠B=3∠C;

利用数学归纳法,根据小丽展示的三种情形得出结论:∠B=n∠C;

(3)利用(2)的结论知∠B=n∠C,∠BAC是△ABC的好角,∠C=n∠A,∠ABC是△ABC的好角,∠A=n∠B,∠BCA是△ABC的好角;然后三角形内角和定理可以求得另外两个角的度数可以是4、172;8、168;16、160;44、132;88°、88°.

【解答】解:(1)△ABC中,∠B=2∠C,经过两次折叠,∠BAC是△ABC的好角;

理由如下:小丽展示的情形二中,如图3,

∵沿∠BAC的平分线AB1折叠,

∴∠B=∠AA1B1;

又∵将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合,

∴∠A1B1C=∠C;

∵∠AA1B1=∠C+∠A1B1C(外角定理),

∴∠B=2∠C,∠BAC是△ABC的好角.

故答案是:是;

(2)∠B=3∠C;如图所示,在△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重复部分,将余下部分沿∠B2A2C的平分线A2B3折叠,点B2与点C重合,则∠BAC是△ABC的好角.

证明如下:∵根据折叠的性质知,∠B=∠AA1B1,∠C=∠A2B2C,∠A1 B1C=∠A1A2B2,

∴根据三角形的外角定理知,∠A1A2B2=∠C+∠A2B2C=2∠C;

∵根据四边形的外角定理知,∠BAC+∠B+∠AA1B1﹣∠A1 B1C=∠BAC+2∠B﹣2∠C=180°,

根据三角形ABC的内角和定理知,∠BAC+∠B+∠C=180°,

∴∠B=3∠C;

由小丽展示的情形一知,当∠B=∠C时,∠BAC是△ABC的好角;

由小丽展示的情形二知,当∠B=2∠C时,∠BAC是△ABC的好角;

由小丽展示的情形三知,当∠B=3∠C时,∠BAC是△ABC的好角;

故若经过n次折叠∠BAC是△ABC的好角,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为∠B=n∠C;

(3)由(2)知设∠A=4°,∵∠C是好角,∴∠B=4n°;

∵∠A是好角,∴∠C=m∠B=4mn°,其中m、n为正整数得4+4n+4mn=180

∴如果一个三角形的最小角是4°,三角形另外两个角的度数是4、172;8、168;16、160;44、132;88°、88°.

【点评】本题考查了翻折变换(折叠问题).解答此题时,充分利用了三角形内角和定理、三角形外角定理以及折叠的性质.难度较大.

16.(2011?房山区一模)已知:等边三角形ABC

(1)如图1,P为等边△ABC外一点,且∠BPC=120°.试猜想线段BP、PC、AP之间的数量关系,并证明你的猜想;

(2)如图2,P为等边△ABC内一点,且∠APD=120°.求证:PA+PD+PC>BD.

【考点】等边三角形的性质;等式的性质;三角形三边关系;全等三角形的判定与性质.

【专题】证明题;压轴题.

【分析】(1)AP=BP+PC,理由是延长BP至E,使PE=PC,连接CE,由∠BPC=120°,推出等边△CPE,得到CP=PE=CE,∠PCE=60°,根据已知等边△ABC,推出AC=BC,∠ACP=∠BCE,根据三角形全等的判定推出△ACP≌△BCE,得出AP=BE即可求出结论;

(2)在AD外侧作等边△AB′D,由(1)得PB′=AP+PD,根据三角形的三边关系定理得到PA+PD+PC>CB′,再证△AB′C≌△ADB,根据全等三角形的性质推出CB′=BD即可.

【解答】猜想:AP=BP+PC,

(1)证明:延长BP至E,使PE=PC,连接CE,

∵∠BPC=120°,

∴∠CPE=60°,又PE=PC,

∴△CPE为等边三角形,

∴CP=PE=CE,∠PCE=60°,

∵△ABC为等边三角形,

∴AC=BC,∠BCA=60°,

∴∠ACB=∠PCE,

∴∠ACB+∠BCP=∠PCE+∠BCP,

即:∠ACP=∠BCE,

∴△ACP≌△BCE(SAS),

∴AP=BE,

∵BE=BP+PE,

∴AP=BP+PC.

(2)证明:在AD外侧作等边△AB′D,

则点P在三角形ADB′外,连接PB',B'C,

∵∠APD=120°∴由(1)得PB′=AP+PD,

在△PB′C中,有PB′+PC>CB′,

∴PA+PD+PC>CB′,

∵△AB′D、△ABC是等边三角形,

∴AC=AB,AB′=AD,

∠BAC=∠DAB′=60°,

∴∠BAC+∠CAD=∠DAB′+∠CAD,

即:∠BAD=∠CAB′,

∴△AB′C≌△ADB,

∴CB′=BD,

∴PA+PD+PC>BD.

【点评】本题主要考查对等边三角形的性质和判定,全等三角形的性质和判定,三角形的三边关系,等式的性质等知识点的理解和掌握,此题是一个拔高的题目,有一定的难度.

17.(2010?丹东)如图,已知等边三角形ABC中,点D,E,F分别为边AB,AC,BC的中点,M为直线BC上一动点,△DMN为等边三角形(点M的位置改变时,△DMN也随之整体移动).

(1)如图1,当点M在点B左侧时,请你判断EN与MF有怎样的数量关系?点F是否在直线NE上?都请直接写出结论,不必证明或说明理由;

(2)如图2,当点M在BC上时,其它条件不变,(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请利用图2证明;若不成立,请说明理由;

(3)若点M在点C右侧时,请你在图3中画出相应的图形,并判断(1)的结论中EN与MF的数量关系是否仍然成立?若成立,请直接写出结论,不必证明或说明理由.

【考点】等边三角形的性质;全等三角形的判定与性质.

【专题】压轴题;动点型;探究型.

【分析】(1)可通过全等三角形来证明EN与MF相等,如果连接DE,DF,那么DE就是三角形ABC的中位线,可得出三角形ADE,BDF,DFE,FEC都是等边三角形,那么∠DEF=∠DFM=60°,DE=DF,而∠MDN和∠FDE都是60°加上一个∠NDF,因此三角形MDF和EDN就全等了(ASA).由此可得出EN=MF,∠DNE=∠DMB,已知了BD=DF,DM=DN,因此三角形DBM≌三角形DFN,因此∠DFN=∠DBM=120°,因此∠DFN是三角形DFE的外角因此N,F,E在同一直线上.

(2)(3)证法同(1)都要证明三角形MDF和EDN全等,证明过程中都要作出三角形的三条中位线,然后根据三条中位线分成的小等边三角形的边和角相等来得出两三角形全等的条件,因此结论仍然成立.

【解答】解:(1)判断:EN与MF相等(或EN=MF),点F在直线NE上,

(2)成立.

连接DF,NF,证明△DBM和△DFN全等(AAS),

∵△ABC是等边三角形,

∴AB=AC=BC.

又∵D,E,F是三边的中点,

∴EF=DF=BF.

∵∠BDM+∠MDF=60°,∠FDN+∠MDF=60°,

∴∠BDM=∠FDN,

在△DBM和△DFN中,,

∴△DBM≌△DFN,

∴BM=FN,∠DFN=∠FDB=60°,

∴NF∥BD,

∵E,F分别为边AC,BC的中点,

∴EF是△ABC的中位线,

∴EF∥BD,

∴F在直线NE上,

∵BF=EF,

∴MF=EN.

(3)如图③,MF与EN相等的结论仍然成立(或MF=NE成立).

连接DF、DE,

由(2)知DE=DF,∠NDE=∠FDM,DN=DM,

在△DNE和△DMF中,

∴△DNE≌△DMF,

∴MF=NE.

【点评】本题主要考查了等边三角形的性质/三角形中位线定理以及全等三角形的判定和性质等知识点,根据等边三角形的性质以及三角形中位线定理得出全等三角形的条件是解题的关键.

18.(2006?西岗区)如图,以△ABC的边AB、AC为直角边向外作等腰直角△ABE和△ACD,M是BC的中点,请你探究线段DE与AM之间的关系.

说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);

(2)在你经历说明(1)的过程之后,可以从下列①、②中选取一个补充或更换已知条件,完成你的证明.

①画出将△ACM绕某一点顺时针旋转180°后的图形;

②∠BAC=90°(如图)

附加题:如图,若以△ABC的边AB、AC为直角边,向内作等腰直角△ABE和△ACD,其它条件不变,试探究线段DE与AM之间的关系.

【考点】等腰三角形的判定;全等三角形的判定与性质;等腰直角三角形.

【专题】压轴题;分类讨论.

【分析】(1)分三种情况讨论,当∠BAC=90°,易得△ABC≌△AED;根据直角三角形的性质,可得ED=2AM;进而可以在∠BAC>90°与∠BAC<90°时,比较可得有ED=2AM的结论;

(2)根据(1)的结论,选取②易得答案.

【解答】解:(1)分三种情况;

当∠BAC=90°,M是BC的中点

∴AM=BM=MC=

∠EAD=∠BAC=90°,AE=AB,AC=AD

∴△ABC≌△AED

∴ED=BC

∴ED=2AM

当∠BAC>90°,易得ED=2AM

当∠BAC<90°,易得ED=2AM

(2)已知(1)的结论,若∠BAC=90°,可得ED=2AM

附加:结合上题可得:2AM=DE

延长CA到F使AF=AC,连接BF

易证△ABF≌△ADE

∴BF=DE

∵2AM=BF

∴2AM=DE.

【点评】本题为探究性题目,要求学生能全面考查可能出现的情况,并依次求出其中的关系.

19.(2006?大连)如图1,Rt△ABC中AB=AC,点D、E是线段AC上两动点,且AD=EC,AM垂直BD,垂足为M,AM的延长线交BC于点N,直线BD与直线NE相交于点F.试判断△DEF的形状,并加以证明.

说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);(2)在你经历说明(1)的过程之后,可以从下列①、②中选取一个补充或者更换已知条件,完成你的证明.

1、画出将△BAD沿BA方向平移BA长,然后顺时针旋转90°后图形;

2、点K在线段BD上,且四边形AKNC为等腰梯形(AC∥KN,如图2).

附加题:如图3,若点D、E是直线AC上两动点,其他条件不变,试判断△DEF的形状,并说明理由.

【考点】等腰三角形的判定;全等三角形的判定与性质.

【专题】压轴题;动点型.

【分析】(1)要证DF=EF,就要证出∠FDE=∠FED,也就是∠BDA=∠NEC,观察这两个角,不能直接用角的大小关系或全等来得出相等,那么可通过构建全等三角形来得出一个和两个分别相等的中间值,以此来证出两角相等,那么可过C作CP⊥AC,那么我们可通过证三角形ABD和APC全等来得出∠ADB=∠ACP,通过证三角形CPN和CEN全等来得出∠MEC=∠NPC.先看第一对三角形,已知的条件有AB=AD,一组直角,而∠ABD和∠PAC都是∠ADB的余角,因此∠ABD=∠PAD,那么两三角形就全等,可得出AC=PC=CE,∠ADB=∠NPC,又知道了∠NCE=∠PCN=45°,一条公共边CN,那么后面的一对三角形也全等,就能得出∠ADB=∠MEC=∠NPC,也就能得出∠FDE=∠FED了由此可得证.

(2)解题思路和(1)一样,也是先证三角形ABD和APC全等,后证三角形CPN和CEN全等,来得出结论.

【解答】解:△DEF是等腰三角形

证明:如图,过点C作CP⊥AC,交AN延长线于点P

∵Rt△ABC中AB=AC

∴∠BAC=90°,∠ACB=45°

∴∠PCN=∠ACB,∠BAD=∠ACP

∵AM⊥BD

∴∠ABD+∠BAM=∠BAM+∠CAP=90°

∴∠ABD=∠CAP

∴△BAD≌△ACP

∴AD=CP,∠ADB=∠P

∵AD=CE

∴CE=CP

∵CN=CN

∴△CPN≌△CEN

∴∠P=∠CEN

∴∠CEN=∠ADB

∴∠FDE=∠FED

∴△DEF是等腰三角形.

附加题:△DEF为等腰三角形

证明:过点C作CP⊥AC,交AM的延长线于点P

∵Rt△ABC中AB=AC

∴∠BAC=90°,∠ACB=45°

∴∠PCN=∠ACB=∠ECN

∵AM⊥BD

∴∠ABD+∠BAM=∠BAM+∠CAP=90°

∴∠ABD=∠CAP

∴△BAD≌△ACP

∴AD=CP,∠D=∠P

∵AD=EC,CE=CP

又∵CN=CN

∴△CPN≌△CEN

∴∠P=∠E

∴∠D=∠E

∴△DEF为等腰三角形.

【点评】本题主要考查了等腰三角形的判定和全等三角形的判定与性质;通过已知和所求条件正确的构建出全等三角形是解题的关键.下载本文

显示全文
专题