视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
《全日制义务教育数学课程标准(修改稿)》(初中部分)
2025-10-06 04:40:57 责编:小OO
文档
《全日制义务教育数学课程标准(修改稿)》修改说明

(初中部分)

第三学段(7—9年级)

一、数与代数

(一)数与式

1.有理数

(1)理解有理数的意义,能用数轴上的点表示有理数,会比较有理数的大小。

(2)借助数轴理解相反数和绝对值的意义,掌握求有理数的相反数与绝对值的方法(绝对值符号内不含字母)。

(3)理解乘方的意义,掌握有理数的加、减、乘、除、乘方及简单的混合运算(以三步以内为主)。

(4)理解有理数的运算律,能运用运算律简化运算。

(5)能运用有理数的运算解决简单的问题。

2.实数

(1)了解平方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根。

(2)了解乘方与开方互为逆运算,会用平方运算求百以内整数的平方根,会用立方运算求百以内整数(对应的负整数)的立方根,会用计算器求平方根和立方根。

(3)了解无理数和实数的概念,了解实数与数轴上的点一一对应。会求实数的相反数与绝对值。

(4)能用有理数估计一个无理数的大致范围。

(5)了解近似数的概念;在解决实际问题中,能用计算器进行近似计算,并按问题的要求对结果取近似值。

(6)了解二次根式、最简二次根式的概念,了解二次根式加、减、乘、除运算法则,会用它们进行有关实数的简单四则运算。

3.代数式

(1)在现实情境中,借助代数式进一步理解用字母表示数的意义。

(2)能分析简单问题的数量关系,并用代数式表示。

(3)理解简单的数学公式,会代入具体的数值进行计算。

(4)会求代数式的值;能根据特定的问题查阅资料,找到所需要的公式,并会代入具体的值进行计算。

4.整式与分式

(1)了解整数指数幂的意义和基本性质,会用科学记数法表示数(包括在计算器上表示)。

(2)了解整式的概念,掌握合并同类项和去括号的法则,会进行简单的整式加法和减法运算;会进行简单的整式乘法运算(其中多项式相乘仅指一次式之间以及一次式与二次式相乘)。

(3)会推导乘法公式:,

,了解公式的几何背景,并能进行简单计算。

(4)会用提公因式法、公式法(直接利用公式不超过二次)进行因式分解(指数是正整数)。

(5)了解分式和最简分式的概念,会利用分式的基本性质进行约分和通分;会进行简单的分式加、减、乘、除运算。

(二)方程与不等式

1.方程与方程组

(1)能够根据具体问题中的数量关系列出方程,体会方程是刻画现实世界的一个有效的数学模型。

(2)经历心算、画图或利用计算器等估计方程解的过程。

(3)掌握等式的基本性质。

(4)会解一元一次方程、可化为一元一次方程的分式方程。

(5)掌握代入消元法和加减消元法,会解简单的二元一次方程组和三元一次方程组。

(6)理解配方法,会用配方法、公式法、因式分解法解数字系数的一元二次方程。

(7)能用一元二次方程的根的判别式判别方程是否有实根和两个实根是否相等。

(8)了解一元二次方程的根与系数的关系(不要求应用这个关系解决其他问题)。

(9)能根据具体问题的实际意义,检验方程的解是否合理。

2.不等式与不等式组

(1)结合具体问题中的大小关系,了解不等式的意义,并探索不等式的基本性质。

(2)会解简单的一元一次不等式,并能在数轴上表示出解集。会用数轴确定由两个一元一次不等式组成的不等式组的解集。

(3)能够根据具体问题中的数量关系,列出一元一次不等式,解决简单的问题。

(三)函数

1.函数

(1)探索简单实例中的数量关系和变化规律,了解常量、变量的意义。

(2)结合实例,了解函数的概念和三种表示法,能举出函数的实例。

(3)能结合图像对简单实际问题中的函数关系进行分析。

(4)能确定简单实际问题中函数自变量的取值范围,并会求出函数值。

(5)能用适当的函数表示法刻画简单实际问题中变量之间的关系。

(6)结合对函数关系的分析,尝试对变量的变化规律进行初步预测。

2.一次函数

(1)结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式。

(2)会利用待定系数法确定一次函数表达式。

(3)会画一次函数的图像,根据一次函数的图像和解析表达式y=kx+b(k≠0)探索并理解k>0或k<0时,图像的变化情况。

(4)理解正比例函数。

(5)能根据一次函数的图像求二元一次方程组的近似解。

(6)能利用一次函数解决实际问题。

3.反比例函数

(1)结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数的表达式。

(2)能画出反比例函数的图像,根据图像和解析表达式y=k/x(k≠0)探索并理解k>0或k<0时,图像的变化情况。

(3)能用反比例函数解决简单实际问题。

4.二次函数

(1)通过对实际问题的分析,确定二次函数的表达式,体会二次函数的意义。

(2)会利用待定系数法确定二次函数的表达式。

(2)会用描点法画出二次函数的图像,通过图像了解二次函数的性质。

(3)会用配方法将数字系数的二次函数的表达式化为的形式,并能由此写出二次函数图像的顶点坐标,说出图像的开口方向,画出图像的对称轴,并能解决简单实际问题。

(4)会利用二次函数的图像求一元二次方程的近似解。

二、图形与几何

(一)图形的性质

1.点、线、面、角

(1)通过实物和具体模型,了解从物体外形抽象出来的几何体、平面、直线和点等。

(2)会比较线段的大小,理解线段的和、差,以及线段中点的意义。

(3)直观地了解平面上两条直线(不重合,下同)之间的关系:相交与不相交。

(4)掌握基本事实:两点确定一条直线。

(5)掌握基本事实:两点间直线段最短。

(6)理解两点间距离的意义,会度量两点之间的距离。

(7)理解角的概念,会比较角的大小。

(8)认识度、分、秒,会对度、分、秒进行简单的换算,并计算角的和、差。

2.相交线与平行线

(1)理解对顶角、余角、补角等概念,探索并掌握对顶角相等、同角(等角)的余角相等,同角(等角)的补角相等的性质。

(2)理解垂线、垂线段等概念,会用三角尺或量角器过一点画已知直线的垂线。

(3)理解点到直线的距离的意义,会度量点到直线的距离。

(4)掌握基本事实:过直线外一点有且仅有一条直线与这条直线垂直。

(5)会识别同位角、内错角、同旁内角。

(6)理解平行线概念;掌握基本事实:两条直线被第三条直线所截,如果同位角相等,则两直线平行。

(7)掌握基本事实:过直线外一点有且仅有一条直线与这条直线平行。

(8)掌握平行线的性质定理:两条平行直线被第三条直线所截,同位角相等;了解该定理的证明。

(9)会用三角尺和直尺过已知直线外一点画这条直线的平行线。

(10)进一步探索并证明平行线的判定定理:两条直线被第三条直线所截,如果内错角相等(或同旁内角互补),则两直线平行;平行线的性质定理:两条平行直线被第三条直线所截,内错角相等(或同旁内角互补)。

(11)了解平行于同一条直线的两条直线平行。

3.三角形

(1)了解三角形及其内角、外角、中线、高、角平分线等概念,会按照边长的关系和角的大小对三角形进行分类,了解三角形的稳定性。

(2)探索并证明三角形的内角和定理。掌握它的推论:三角形的外角等于与它不相邻的两个内角的和,且大于任何一个与它不相邻的内角。会证明三角形的任意两边之和大于第三边。

(3)了解全等三角形的概念,能识别全等三角形中的对应边、对应角。

(4)掌握基本事实:两边及其夹角分别相等的两个三角形全等。

(5)掌握基本事实:两角及其夹边分别相等的两个三角形全等。

(6)掌握基本事实:三边分别相等的两个三角形全等。

(7)证明“角角边”定理:两角和其中一角的对边分别相等的两个三角形全等。

(8)理解角平分线的概念,会用量角器画角的平分线。

(9)探索并证明角平分线的性质定理:角平分线上的点到角两边的距离相等;反之,角的内部到角两边距离相等的点在角的平分线上。

(10)理解线段垂直平分线的概念,探索并证明线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端距离相等;反之,到线段两端距离相等的点在线段的垂直平分线上。

(11)了解等腰三角形的概念,探索并证明等腰三角形的性质定理:等腰三角形的两底角相等;底边上的高、中线及顶角平分线重合。探索并掌握等腰三角形的判定定理:有两个角相等的三角形是等腰三角形。探索等边三角形的性质定理:等边三角形的各角都等于60°,及等边三角形的判定定理:三个角都相等的三角形(或有一个角是60°的等腰三角形)是等边三角形。

(12)了解直角三角形的概念,探索并掌握直角三角形的性质定理:直角三角形的两个锐角互余,直角三角形斜边上的中线等于斜边的一半。掌握有两个角互余的三角形是直角三角形。

(13)探索勾股定理及其逆定理,并会运用它们由直角三角形的已知两边求第三边、由三角形的三边的数量关系判断直角三角形,以及解决一些简单的实际问题。

(14)探索并掌握判定直角三角形全等的“斜边、直角边”定理。

(15)了解三角形重心的概念。

4.四边形

(1)了解多边形的定义,多边形的顶点,边,内角,外角,对角线等概念。探索并掌握多边形内角和与外角和公式。

(2)理解平行四边形、矩形、菱形、正方形的概念,以及它们之间的关系;了解四边形的不稳定性。

(3)探索并证明平行四边形的性质定理:平行四边形的对边相等、对角相等、对角线互相平分,平行四边形的判定定理:一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;对角线互相平分的四边形是平行四边形。

(4)了解两条平行线之间距离的意义,会度量两条平行线之间的距离。

(5)探索并证明矩形、菱形、正方形的性质定理:矩形的四个角都是直角,对角线相等;菱形的四条边相等,对角线互相垂直;以及它们的判定定理:三个角是直角的四边形是矩形,对角线相等的平行四边形是矩形;四边相等的四边形是菱形,对角线互相垂直的平行四边形是菱形。正方形具有矩形和菱形的一切性质。

(6)探索并证明三角形的中位线定理。

5.圆

(1)理解圆、弧、弦、圆心角、圆周角的概念,了解等圆、等弧的概念。探索并了解点与圆的位置关系。

(2)探索并证明垂径定理:垂直于弦的直径平分弦以及弦所对的两条弧。

(3)探索圆周角与圆心角及其所对弧的关系,了解并证明圆周角定理及其推论:圆周角的度数等于它所对弧上的圆心角度数的一半;直径上的圆周角是直角;90°的圆周角所对的弦是直径;圆内接四边形的对角互补。

(4)知道三角形的内心和外心。

(5)了解直线和圆的位置关系,掌握切线的概念。

(6)探索切线与过切点的半径的关系:切线垂直于过切点的半径;反之,过半径外端且垂直于半径的直线是圆的切线。会用三角尺过圆上一点画圆的切线。

(7)探索并证明切线长定理:过圆外一点所画的圆的两条切线的长相等。

(8)了解圆与圆的位置关系。

(9)会计算圆的弧长、扇形的面积。

(10)了解正多边形的概念。

6.尺规作图

(1)会用尺规完成以下基本作图:作一条线段等于已知线段;作一个角等于已知角;作一个角的平分线;作一条线段的垂直平分线;过一点作已知直线的垂线。

(2)会利用基本作图作三角形:已知三边、两边及其夹角、两角及其夹边作三角形;已知底边及底边上的高作等腰三角形;已知一直角边和斜边作直角三角形。

(3)会利用基本作图完成作图:过不在同一直线上的三点作圆;作三角形的内切圆;作圆的内接正方形和正六边形。

(4)在上述尺规作图的问题中,了解作图的道理,保留作图的痕迹,不要求写出作法。

7.定义、命题、定理

(1)了解定义、命题、定理、推论的意义。会区分命题的条件和结论。

(2)结合具体事例,了解原命题及其逆命题的概念。会识别两个互逆的命题,知道原命题成立其逆命题不一定成立。

(3)知道证明的意义和证明的必要性,知道证明要合乎逻辑,知道证明的过程可以有不同的表达形式,学会综合法证明的格式。

(4)通过实例体会反证法的含义。了解反例的作用,知道利用反例可以判断一个命题是错误的。

(二)图形的变化

1.图形的轴对称

(1)通过具体实例了解轴对称的概念,探索它的基本性质:关于一条直线成轴对称的两个图形中,对应点的连线被对称轴垂直平分。

(2)给定对称轴,能够作出简单平面图形(点,线段,直线,三角形等)的轴对称图形。

(3)了解轴对称图形的概念。探索简单的轴对称图形(等腰三角形、矩形、菱形、正多边形、圆)的性质。

(4)认识和欣赏自然界和现实生活中的轴对称图形。

2.图形的旋转

(1)通过具体实例(如正多边形,圆等)认识平面图形的旋转。探索它的基本性质:一个图形和它经过旋转所得到的图形中,对应点到旋转中心距离相等,对应点与旋转中心连线所成的角相等(参见例9)。

(2)了解中心对称、中心对称图形的概念,探索它的基本性质:关于一个点成中心对称的两个图形中,对应点的连线经过对称中心,且被对称中心平分。

(3)探索线段、平行四边形、正多边形、圆的中心对称性。

(4)认识和欣赏自然界和现实生活中的中心对称图形。

3.图形的平移

(1)通过具体实例认识平移,探索它的基本性质:一个图形和它经过平移所得的图形中,对应点的连线平行且相等。

(2)认识和欣赏平移在自然界和现实生活中的应用。

(3)运用图形的轴对称、旋转、平移进行图案设计。

4.图形的相似

(1)了解比例的基本性质、线段的比、成比例的线段;通过建筑、艺术上的实例了解黄金分割。

(2)通过具体实例认识图形的相似。了解对应角分别相等、对应边分别成比例的多边形叫做相似多边形。相似多边形对应边的比称为相似比。

(3)探索并了解相似三角形的判定定理:两角分别相等的两个三角形相似;两边成比例且夹角相等的两个三角形相似;三边成比例的两个三角形相似。

(4)了解相似三角形的性质定理:相似三角形对应线段的比等于相似比;面积比等于相似比的平方。

(5)了解图形的位似,知道利用位似可以将一个图形放大或缩小。

(6)会利用图形的相似解决一些简单的实际问题。

(7)利用图形的相似,探索直角三角形中的边角关系。认识锐角三角函数(sinA,cosA,tanA),知道30°、45°、60°角的三角函数值。

(8)会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它的对应锐角。

(9)能用锐角三角函数解直角三角形,能用相关知识解决一些简单的实际问题。

5.图形的投影

(1)通过背景丰富的实例,了解中心投影和平行投影的概念。

(2)会画直棱柱、圆柱、圆锥、球的主视图、左视图、俯视图,会判断简单物体的视图,并会根据视图描述简单的几何体。

(3)了解直棱柱、圆锥的侧面展开图,能根据展开图判断和制作实物模型。

(4)通过实例了解视图与展开图(球除外)在现实生活中的应用。

(三)图形与坐标

1.坐标与图形的位置

(1)结合丰富的实例进一步体会用有序数对可以表示物体的位置。

(2)理解平面直角坐标系的有关概念,能画出直角坐标系;在给定的直角坐标系中,根据坐标描出点的位置、由点的位置写出它的坐标。

(3)在实际问题中,能建立适当的直角坐标系,描述物体的位置。

(4)能写出简单图形(多边形,矩形)的顶点坐标,体会可以用坐标刻画一个简单图形。

(5)在平面上,能用方位角和距离刻画两个物体的相对位置。

2.坐标与图形的运动

(1)在同一个直角坐标系里,对于一个已知其顶点坐标的直线形,能写出它关于坐标轴对称的图形的顶点坐标,知道对应顶点坐标之间的关系。

(2)在同一个直角坐标系里,对于一个已知其顶点坐标的直线形,能写出它沿坐标轴方向平移后的图形的顶点坐标,体会图形顶点坐标的变化。

(3)探索并了解将一个直线形依次沿两个坐标轴平移后所得到的图形与原来的图形具有平移关系,体会图形顶点坐标的变化。

(4)探索并了解将一个图形(直线形)的顶点坐标(有一个顶点为原点、有一个边在横坐标轴上)分别扩大或缩小相同倍数时所对应的图形与原图形是位似的。

三、统计与概率

1.抽样与数据分析

(1)经历收集、整理、描述和分析数据的活动,了解数据分析的过程;能用计算器处理较为复杂的数据。

(2)体会抽样的必要性,通过案例了解简单随机抽样。

(3)会制作扇形统计图,能用统计图直观、有效地描述数据。

(4)理解平均数的意义,会计算中位数、众数、加权平均数,了解数据的集中程度。

(5)体会刻画数据离中程度的意义,会计算简单数据的方差。

(6)会画频数直方图,会利用频数直方图解释数据中蕴涵的信息。

(7)体会样本与总体关系,知道可以通过样本平均数、样本方差推断总体平均数、总体方差。

(8)通过表格、折线图等,了解随机现象的变化趋势。

2.事件发生的概率

(1)能列出随机现象所有可能的结果,以及指定事件发生的所有可能结果,了解事件发生的概率。

(2)知道通过大量地重复试验,可以用频率来估计概率。

四、综合与实践

在本学段中,学生将在教师的指导下,将所学过的知识有机地结合,增强对知识的理解;注意与实际问题有机地结合,进一步获得数学活动的经验,增强应用意识。

具体目标

1.通过对有关问题的探讨,了解所学过的数与代数、图形与几何、统计与概率知识之间的关联。

2.初步获得发现问题和提出问题的经验。

3.结合实际背景,在给定目标下,设计解决问题的方案,进一步体验分析问题和解决问题的过程,发展相应的能力。下载本文

显示全文
专题