视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
线段最值问题
2025-10-03 05:21:53 责编:小OO
文档
由此派生:

③[定点到定点]:三角形两边之和大于第三边;

④[定线到定线]:平行线之间,垂线段最短;

⑤[定点到定圆]:点圆之间,点心线截距最短(长);

⑥[定线到定圆]:线圆之间,心垂线截距最短;

⑦[定圆到定圆]:圆圆之间,连心线截距最短(长)。

举例证明:[定点到定圆]:点圆之间,点心线截距最短(长)。

,P是⊙O上一点,求AP简析:E是定点,F'是动点,要确定F'点的运动路径。先确定线段A'B'的运动轨迹是

,内圆半径为AB边上的高,F'是A'B'上任意一点,因此F

到圆环的最短和最长路径。

E到圆环的最短距离为

=EC+CF=3+6=9,其差为

简析:动线段(或定点)应居于动点轨迹的两侧,本题的三条动线段在OA、OB的内侧。所以本题的关键是

动线段PM、MN、PN转化为连接两点之间的路径

折得P1、P2,△PMN的周长转化为

点P1、P2之间的路径,从而转化为求

小值为线段P1P2=OP=6。

例5.如图,在锐角△ABC中,AB

N分别是AD和AB上的动点,则简析:本题的问题也在于动线段BM、MN居于动点轨迹AD的同侧,同样把点N沿AD翻折至AC上,BM+MN=BM+MN',转化为求点B到直线AC的最短路径,即BN'⊥AC 时,最小值为2√2。

【平移变换类】典型问题:“造桥选址”。

例6.如图,m、n是小河两岸,河宽20米,A、B是河旁两个村庄,要在河上造一座桥,要使A、B之间的路径最短应该如何选址(桥须与河岸垂直)?

简析:桥长为定值,可以想像把河岸m向下平移与n重合,同时把点A向下平移河宽,此时转化成n上的一点到A、B的路径之和最短,即转化为定点A'到定点B的最短路径。如下图:

思路是把动线AM平移至A'M,A'N+BN即转化为求定点A'与定点B之间的最路径。本题的关键是定长线段MN把动线段分隔,此时须通过平移把动线段A'N、BN变为连续路径,也可以把点B向上平移20米与点A连接。

例7.如图,CD是直线y=x上的一条定长的动线段,且CD=2,点A(4,0),连接AC、AD,设C点横坐标为m,求m为何值时,△ACD的周长最小,并求出这个最小值。

简析:两条动线段AC、AD居于动点所在直线的两侧,不符合基本图形中定形(点线圆)应在动点轨迹的两侧。首先把AC沿直线CD翻折至另一侧,如下图:

现在把周长转化为A'C+CD+AD,还需解决一个问题:动线段A'C与AD之间被定长线段CD阻断,动线段必须转化成连续的路径。同上题的道理,把A'C沿CD方向平移CD的长度即可,如下图。

现在已经转化为A''D+AD的最短路径问题,属定点到定点,当A''D与AD共线时A''D+AD最短,即为线段AA''的长。

【旋转变换类】典型问题:“费马点”。

【三角变换类】典型问题:“胡不归”。

例9.如图,A地在公路BC旁的沙漠里,A到BC的距离AH=2√3,AB=2√19,在公路BC上行进的速度是在沙漠里行

驶速度的2倍。某人在B地工作,A地家中父亲病危,他急着沿直线BA赶路,谁知最终没能见到父亲最后一面,其父离世之时思念儿子,连连问:“胡不归,胡不归……!”(怎么还不回来),这真是一个悲伤的故事,也是因为不懂数学而导致的。那么,从B至A怎样行进才能最快到达?

简析:BP段行驶速度是AP段的2倍,要求时间最短即求BP/2+AP最小,从而考虑BP/2如何转化,可以构造含30°角利用三角函数关系把BP/2转化为另一条线段。如下图,作∠CBD=30°,PQ⊥BD,得PQ=1/2BP,由“垂线段最短”知当A、P、Q共线时AP+PQ=AQ'最小。

【相似变换类】典型问题:“阿氏圆”。

“阿氏圆”:知平面上两点A、B,则所有满足PA/PB=k且不等于1的点P的轨迹是一个圆,这个轨迹最先由古希腊数学家阿波罗尼斯发现,故称阿氏圆,如下图所示,其中PO:BO=AO:PO=PA:PB=k。

例10.已知A(-4,-4)、B(0,4)、C(0,-6)、D(0,-1),AB与x轴交于点E,以点E为圆心,ED长为半径作圆,点M为⊙E上一动点,求1/2AM+CM的最小值。

简析:本题的主要问题在于如何转化1/2AM,注意到由条件知在M的运动过程中,EM:AE=1:2保持不变,从而想到构造相似三角形,使之与△AEM的相似比为1:2,这样便可实现1/2AM的转化,如下图取EN:EM=1:2,即可得△EMN∽△EAM,再得MN=1/2AM,显然,MN+CM的最小值就是定点N、C之间的最短路径。

之后便是常规方法先求N点坐标,再求CN的长。

【过手练习】

2.菱形ABCD中,∠BAC=60°,P是AC

轴上的点B,连接OA、OM、AB,AO=OB=2,∠AOB=120°.

(1)求这条抛物线的表达式;

(2)连接OM,求∠AOM的大小;

(3)过点M作ME⊥OB,垂足为E,点P为y轴上动点,若以O、M、P为顶点的三角形与

下载本文

显示全文
专题