视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
kalman filter 卡尔曼滤波的例子
2025-10-03 07:41:38 责编:小OO
文档
kalman filter 卡尔曼滤波的例子

2008-11-01 02:02

因为在研究中使用了kalman 滤波,这是一个挺难理解的控制理论,对于kalman 的初学者来讲,像我这样没什么数学功底的人,看教科书真是很累,说实在的,我觉得老外的基础理论的书都很评议近人,不像国内那些教授搞得那么悬虚,

初学者可以参考

http://bbs.matwav.com/index.jsp 研学论坛有几篇通俗易懂的中文解释

http://www.cs.unc.edu/~welch/kalman/ 这里是老外综合的kalman基地,很不错的。

代码示例:

============================kalman.h================================

// kalman.h: interface for the kalman class.

//

///////////////////////////////////////////////////////////////////// /

#if !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCL UDED_)

#define AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLUDED_

#if _MSC_VER > 1000

#pragma once

#endif // _MSC_VER > 1000

#include

#include "cv.h"

class kalman

{

public:

void init_kalman(int x,int xv,int y,int yv);

CvKalman* cvkalman;

CvMat* state;

CvMat* process_noise;

CvMat* measurement;

const CvMat* prediction;

CvPoint2D32f get_predict(float x, float y);

kalman(int x=0,int xv=0,int y=0,int yv=0);//virtual ~kalman();

};

#endif

// !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLU DED_)

============================kalman.cpp=============================== =

#include "kalman.h"

#include

/* tester de printer toutes les valeurs des vecteurs...*/

/* tester de changer les matrices du noises */

/* replace state by cvkalman->state_post ? */

CvRandState rng;

const double T = 0.1;

kalman::kalman(int x,int xv,int y,int yv)

{

cvkalman = cvCreateKalman( 4, 4, 0 );

state = cvCreateMat( 4, 1, CV_32FC1 );

process_noise = cvCreateMat( 4, 1, CV_32FC1 );

measurement = cvCreateMat( 4, 1, CV_32FC1 );

int code = -1;

/* create matrix data */

const float A[] = {

1, T, 0, 0,

0, 1, 0, 0,

0, 0, 1, T,

0, 0, 0, 1

};

const float H[] = {

1, 0, 0, 0,

0, 0, 0, 0,

0, 0, 1, 0,

0, 0, 0, 0

}

pow(320,2), pow(320,2)/T, 0, 0,

pow(320,2)/T, pow(320,2)/pow(T,2), 0, 0,

0, 0, pow(240,2), pow(240,2)/T,

0, 0, pow(240,2)/T, pow(240,2)/pow(T,2)

};

const float Q[] = {

pow(T,3)/3, pow(T,2)/2, 0, 0,

pow(T,2)/2, T, 0, 0,

0, 0, pow(T,3)/3, pow(T,2)/2,

0, 0, pow(T,2)/2, T

};

const float R[] = {

1, 0, 0, 0,

0, 0, 0, 0,

0, 0, 1, 0,

0, 0, 0, 0

};

cvRandInit( &rng, 0, 1, -1, CV_RAND_UNI );

cvZero( measurement );

cvRandSetRange( &rng, 0, 0.1, 0 );

rng.disttype = CV_RAND_NORMAL;

cvRand( &rng, state );

memcpy( cvkalman->transition_matrix->data.fl, A, sizeof(A));

memcpy( cvkalman->measurement_matrix->data.fl, H, sizeof(H));

memcpy( cvkalman->process_noise_cov->data.fl, Q, sizeof(Q));

memcpy( cvkalman->error_cov_post->data.fl, P, sizeof(P));

memcpy( cvkalman->measurement_noise_cov->data.fl, R,

sizeof(R));

//cvSetIdentity( cvkalman->process_noise_cov,

cvRealScalar(1e-5) );

//cvSetIdentity( cvkalman->error_cov_post, cvRealScalar(1)); //cvSetIdentity( cvkalman->measurement_noise_cov,

cvRealScalar(1e-1) );/* choose initial state */

state->data.fl[0]=x;

state->data.fl[1]=xv;

state->data.fl[2]=y;

state->data.fl[3]=yv;

cvkalman->state_post->data.fl[0]=x;

cvkalman->state_post->data.fl[1]=xv;

cvkalman->state_post->data.fl[2]=y;

cvkalman->state_post->data.fl[3]=yv;

cvRandSetRange( &rng, 0,

sqrt(cvkalman->process_noise_cov->data.fl[0]), 0 );

cvRand( &rng, process_noise );

}

CvPoint2D32f kalman::get_predict(float x, float y){

/* update state with current position */

state->data.fl[0]=x;

state->data.fl[2]=y;

/* predict point position */

/* x'k=A鈥 k+B鈥 k

P'k=A鈥 k-1*AT + Q */

cvRandSetRange( &rng, 0,

sqrt(cvkalman->measurement_noise_cov->data.fl[0]), 0 );

cvRand( &rng, measurement );

/* xk=A?xk-1+B?uk+wk */

cvMatMulAdd( cvkalman->transition_matrix, state, process_noise, cvkalman->state_post );

/* zk=H?xk+vk */

cvMatMulAdd( cvkalman->measurement_matrix,

cvkalman->state_post, measurement, measurement );

/* adjust Kalman filter state */

/* Kk=P'k鈥 T鈥?H鈥 'k鈥 T+R)-1

xk=x'k+Kk鈥?zk-H鈥 'k)Pk=(I-Kk鈥 )鈥 'k */

cvKalmanCorrect( cvkalman, measurement );

float measured_value_x = measurement->data.fl[0];

float measured_value_y = measurement->data.fl[2];

const CvMat* prediction = cvKalmanPredict( cvkalman, 0 );

float predict_value_x = prediction->data.fl[0];

float predict_value_y = prediction->data.fl[2];

return(cvPoint2D32f(predict_value_x,predict_value_y)); }

void kalman::init_kalman(int x,int xv,int y,int yv)

{

state->data.fl[0]=x;

state->data.fl[1]=xv;

state->data.fl[2]=y;

state->data.fl[3]=yv;

cvkalman->state_post->data.fl[0]=x;

cvkalman->state_post->data.fl[1]=xv;

cvkalman->state_post->data.fl[2]=y;

cvkalman->state_post->data.fl[3]=yv;

}下载本文

显示全文
专题