考试时间:90分钟;命题人:数学教研组
考生注意:
1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟
2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上
3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)
一、单选题(10小题,每小题3分,共计30分)
1、如图,平行线AB,CD被直线AE所截.若∠1=70°,则∠2的度数为( )
A.80° B.90° C.100° D.110°
2、下列命题是假命题的是( )
A.同旁内角互补,两直线平行;
B.如果两条直线都和第三条直线平行,那么这两条直线也互相平行;
C.同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行;
D.同位角互补,两直线平行;
3、如图,已知,,平分,则( )
A.32° B.60° C.58° D.°
4、一辆汽车在广阔的草原上行驶,两次拐弯后,行驶的方向与原来的方向相同,那么这两次拐弯的角度可能是( )
A.第一次向右拐40°,第二次向右拐140°.
B.第一次向右拐40°,第二次向左拐40°.
C.第一次向左拐40°,第二次向右拐140°.
D.第一次向右拐140°,第二次向左拐40°.
5、下列关于画图的语句正确的是( ).
A.画直线
B.画射线
C.已知A、B、C三点,过这三点画一条直线
D.过直线AB外一点画一直线与AB平行
6、如图,能判定AB∥CD的条件是( )
A.∠2=∠B B.∠3=∠A C.∠1=∠A D.∠A=∠2
7、直线、、、如图所示.若∠1=∠2,则下列结论错误的是( )
A.ABCD B.∠EFB=∠3 C.∠4=∠5 D.∠3=∠5
8、如图,直尺的一条边经过直角三角尺的直角顶点且平分直角,它的对边恰巧经过60°角的顶点.则∠1的大小是( )
A.30° B.45° C.60° D.75°
9、如图,AB∥CD,AE∥CF,∠A=41°,则∠C的度数为( )
A.139° B.141° C.131° D.129°
10、用反证法证明命题“在同一平面内,若 ,则 a∥c”时,首先应假设( )
A.a∥b B.b∥c C.a 与 c 相交 D.a 与 b
第Ⅱ卷(非选择题 70分)
二、填空题(5小题,每小题4分,共计20分)
1、下列命题:①等角的余角相等;②过一点有且只有一条直线与已知直线平行;③相等的角是对顶角;④同位角相等;⑤过直线外一点作这条直线的垂线段,则这条垂线段叫做这个点到这条直线的距离.叙述正确的序号是________.
2、如图,直线 a、b相交于点O,将量角器的中心与点O重合,发现表示60°的点在直线a上,表示135°的点在直线b上,则∠1=______°.
3、如图,已知直线AB和CD相交于O点,∠COE是直角,OF平分∠AOE,∠COF=36°,则∠BOD的大小为 _____.
4、如图,点E是BA延长线上一点,下列条件中:①∠1=∠3;②∠5=∠D;③∠2=∠4;④∠B+∠BCD=180°,能判定ABCD的有___.(填序号)
5、如图,AD⊥BD,BC⊥CD,AB=a cm,BC=b cm,则BD的取值范围是________.
三、解答题(5小题,每小题10分,共计50分)
1、如图,如果∠1=60°,∠2=120°,∠D=60°,那么AB与CD平行吗?BC与DE呢?
观察下面的解答过程,补充必要的依据或结论.
解∵∠1=60°(已知)
∠ABC=∠1 (① )
∴∠ABC=60°(等量代换)
又∵∠2=120°(已知)
∴(② )+∠2=180°(等式的性质)
∴AB∥CD (③ )
又∵∠2+∠BCD=(④ °)
∴∠BCD=60°(等式的性质)
∵∠D=60°(已知)
∴∠BCD=∠D (⑤ )
∴BC∥DE (⑥ )
2、如图,AB∥DG,∠1+∠2=180°.
(1)试说明:AD∥EF;
(2)若DG是∠ADC的平分线,∠2=142°,求∠B的度数.
3、如图,点A、B、C在8×5网格的格点上,每小方格是边长为1个单位长度的正方形.请按要求画图,并回答问题:
(1)延长线段AB到点D,使BD=AB;
(2)过点C画CE⊥AB,垂足为E;
(3)点C到直线AB的距离是 个单位长度;
(4)通过测量 = ,并由此结论可猜想直线BC与AF的位置关系是 .
4、完成下面的推理过程.
已知:如图,,CD平分,EF平分.
试说明:.
证明:∵,
∴ ( ).
∵CD平分,EF平分,
∴ , .
∴ .( )
∴( ).
5、如图,已知∠A=120°,∠FEC=120°,∠1=∠2,试说明∠FDG=∠EFD.请补全证明过程,即在下列括号内填上结论或理由.
解:∵∠A=120°,∠FEC=120°(已知),
∴∠A= ( ).
∴AB∥ ( ).
又∵∠1=∠2(已知),
∴AB∥CD ( ).
∴EF∥ ( ).
∴∠FDG=∠EFD ( ).
-参-
一、单选题
1、D
【分析】
直接利用对顶角以及平行线的性质分析得出答案.
【详解】
解:
∵∠1=70°,
∴∠1=∠3=70°,
∵ABDC,
∴∠2+∠3=180°,
∴∠2=180°−70°=110°.
故答案为:D.
【点睛】
此题主要考查了平行线的性质以及对顶角,正确掌握平行线的性质是解题关键.
2、D
【分析】
利用平行线的性质及判定分别判断后即可确定正确的选项.
【详解】
解:A、同旁内角互补,两直线平行;是真命题,不合题意;
B、如果两条直线都与第三条直线平行,那么这两条直线也互相平行,是真命题,不合题意;
C、同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行,是真命题,不合题意;
D、同位角相等,两直线平行;故同位角互补,两直线平行是假命题,符合题意,
故选D.
【点睛】
本题考查了命题与定理的知识,解题的关键是了解平行线的性质及判定,属于基础定义及定理,难度不大.
3、D
【分析】
先根据平行线的性质(两直线平行,内错角相等),可得∠ADB=∠B,再利用角平分线的性质可得:∠ADE=2∠ADB=°,最后再利用平行线的性质(两直线平行,内错角相等)即可求出答案.
【详解】
解:∵AD∥BC,∠B=32°,
∴∠ADB=∠B=32° .
∵DB平分∠ADE,
∴∠ADE=2∠ADB=°,
∵AD∥BC,
∴∠DEC=∠ADE=°.
故选:D.
【点睛】
题目主要考查了平行线的性质和角平分线的性质,解题的关键是熟练掌握平行线的性质,找出题中所需的角与已知角之间的关系.
4、B
【分析】
画出图形,根据平行线的判定分别判断即可得出.
【详解】
A.如图,由内错角相等可知,第二次拐弯后与原来平行,但方向相反,故不符合题意;
B.如图,由同位角相等可知,第二次拐弯后与原来平行,且方向相同,故符合题意;
C.如图,由内错角不相等可知,第二次拐弯后与原来不平行,故不符合题意;
D.如图,由同位角不相等可知,第二次拐弯后与原来不平行,故不符合题意.
故选:B.
【点睛】
本题考查了平行线的判定,正确画出图形,熟记判定定理是解题的关键.
5、D
【分析】
直接利用直线、射线的定义分析得出答案.
【详解】
解:A、画直线AB=8cm,直线没有长度,故此选项错误;
B、画射线OA=8cm,射线没有长度,故此选项错误;
C、已知A、B、C三点,过这三点画一条直线或2条、三条直线,故此选项错误;
D、过直线AB外一点画一直线与AB平行,正确.
故选:D.
【点睛】
此题主要考查了直线、射线的定义及画平行线,正确把握相关定义是解题关键.
6、D
【分析】
根据平行线的判定定理,找出正确选项即可.
【详解】
根据内错角相等,两直线平行,
∵∠A=∠2,
∴AB∥CD,
故选:D.
【点睛】
本题主要考查了平行线的判定,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角,培养了学生“执果索因”的思维方式与能力.
7、D
【分析】
根据平行线的判定与性质、对顶角相等逐项判断即可.
【详解】
解:∵∠1=∠2,
∴AB∥CD,故A正确,不符合题意;
∴∠4=∠5,故C正确,不符合题意;
∵∠EFB与∠3是对顶角,
∴∠EFB=∠3,故B正确,
无法判断∠3=∠5,故D错误,符合题意,
故选:D.
【点睛】
本题考查平行线的判定与性质、对顶角相等,熟练掌握平行线的判定与性质是解答的关键.
8、D
【分析】
由AC平分∠BAD,∠BAD=90°,得到∠BAC=45°,再由BD∥AC,得到∠ABD=∠BAC=45°,∠1+∠CBD=180°,由此求解即可.
【详解】
解:∵AC平分∠BAD,∠BAD=90°,
∴∠BAC=45°
∵BD∥AC,
∴∠ABD=∠BAC=45°,∠1+∠CBD=180°,
∵∠CBD=∠ABD+∠ABC=45°+60°=105°,
∴∠1=75°,
故选D.
【点睛】
本题主要考查了平行线的性质和角平分线的定义,解题的关键在于能够熟练掌握平行线的性质.
9、A
【分析】
如图,根据AECF,得到∠CGB=41°,根据ABCD,即可得到∠C=139°..
【详解】
解:如图,∵AECF,
∴∠A=∠CGB=41°,
∵ABCD,
∴∠C=180°-∠CGB=139°.
故选:A
【点睛】
本题考查了平行线的性质,熟知平行线的性质是解题关键.
10、C
【分析】
用反证法解题时,要假设结论不成立,即假设a与c不平行(或a与c相交).
【详解】
解:原命题“在同一平面内,若a⊥b,c⊥b,则a∥c”,
用反证法时应假设结论不成立,
即假设a与c不平行(或a与c相交).
故答案为:C.
【点睛】
此题考查了反证法证明的步骤:(1)假设原命题结论不成立;(2)根据假设进行推理,得出矛盾,说明假设不成立;(3)原命题正确.
二、填空题
1、①
【分析】
根据相交线与平行线中的一些概念、性质判断,得出结论.
【详解】
①等角的余角相等,故正确;
②中,需要前提条件:过直线外一点,故错误;
③中,相等的角不一定是对顶角,故错误;
④中,仅当两直线平行时,同位角才相等,故错误;
⑤中应为垂线段的长度叫做这个点到这条直线的距离,故错误.
故答案为:①.
【点睛】
本题考查概念、性质的判定,注意,常考错误类型为某一个性质缺少前提条件的情况,因此我们需要格外注意每一个性质的前提条件.解题的关键是熟练掌握以上概念、性质的判定.
2、75
【分析】
先计算∠AOB的度数,后利用对顶角相等确定即可.
【详解】
如图,根据题意,得∠AOB=135°-60°=75°,
∵∠AOB=∠1,
∴∠1=75°,
故答案为:75.
【点睛】
本题考查了角的计算,对顶角相等,熟练掌握对顶角相等这条性质是解题的关键.
3、18°度
【分析】
根据直角的定义可得∠COE=90°,然后求出∠EOF,再根据角平分线的定义求出∠AOF,然后根据∠AOC=∠AOF﹣∠COF求出∠AOC,再根据对顶角相等解答.
【详解】
解:∵∠COE是直角,
∴∠COE=90°,
∵∠COF=36°,
∴∠EOF=∠COE﹣∠COF=90°﹣36°=54°,
∵OF平分∠AOE,
∴∠AOF=∠EOF=54°,
∴∠AOC=∠AOF﹣∠COF=54°﹣36°=18°,
∴∠BOD=∠AOC=18°.
故答案为:18°.
【点睛】
本题考查了对顶角相等的性质,角平分线的定义,是基础题,熟记概念与性质并准确识图,理清图中各角度之间的关系是解题的关键.
4、②③④
【分析】
根据平行线的判定方法分别判定得出答案.
【详解】
解:①中,∵∠1=∠3,∴AD//BC(内错角相等,两直线平行),故此选项不符合题意;
②中,∵∠5=∠D,∴AB//CD(内错角角相等,两直线平行),故此选项符合题意;
③中,∵∠2=∠4,∴AB//CD(内错角角相等,两直线平行)),故此选项符合题意;
④中,∠B+∠BCD=180°,∴AB//CD (同旁内角互补,两直线平行),故此选项符合题意;
故答案为:②③④.
【点睛】
此题主要考查了平行线的判定,正确掌握平行线的判定方法是解题关键.
5、bcm<BD<a cm
【分析】
根据垂线段最短,可得AB与BD的关系,BD与BC的关系,可得答案.
【详解】
解:由垂线段最短,得BD<AB=acm,BD>BC=bcm,
即bcm<BD<acm,
故答案为:bcm<BD<acm.
【点睛】
本题考查了垂线短的性质,直线外的点到直线的距离:垂线段最短.
三、解答题
1、对顶角相等;∠ABC;同旁内角互补,两直线平行;180;等量代换;内错角相等,两直线平行.
【分析】
先求出∠ABC=60°,即可证明∠ABC+∠2=180°得到AB∥CD,然后求出∠BCD=∠D 即可证明BC∥DE.
【详解】
解∵∠1=60°(已知)
∠ABC=∠1 (对顶角相等),
∴∠ABC=60°(等量代换),
又∵∠2=120°(已知),
∴∠ABC+∠2=180°(等式的性质),
∴AB∥CD (同旁内角互补,两直线平行),
又∵∠2+∠BCD=180°,
∴∠BCD=60°(等式的性质),
∵∠D=60°(已知),
∴∠BCD=∠D (等量代换),
∴BC∥DE (内错角相等,两直线平行),
故答案为:对顶角相等;∠ABC;同旁内角互补,两直线平行;180;等量代换;内错角相等,两直线平行.
【点睛】
本题主要考查了平行线的判定,对顶角相等,解题的关键在于能够熟练掌握平行线的判定条件.
2、(1)见解析;(2)∠B=38°.
【分析】
(1)由AB∥DG,得到∠BAD=∠1,再由∠1+∠2=180°,得到∠BAD+∠2=180°,由此即可证明;
(2)先求出∠1=38°,由DG是∠ADC的平分线,得到∠CDG=∠1=38°,再由AB∥DG,即可得到∠B=∠CDG=38°.
【详解】
(1)∵AB∥DG,
∴∠BAD=∠1,
∵∠1+∠2=180°,
∴∠BAD+∠2=180°.
∵AD∥EF .
(2)∵∠1+∠2=180°且∠2=142°,
∴∠1=38°,
∵DG是∠ADC的平分线,
∴∠CDG=∠1=38°,
∵AB∥DG,
∴∠B=∠CDG=38°.
【点睛】
本题主要考查了平行线的性质与判定,角平分线的定义,熟知平行线的性质与判定条件是解题的关键.
3、(1)见解析;(2)见解析;(3)2;(4),平行
【分析】
(1)根据网格的特点和题意,延长到,使;
(2)根据网格是正方形,垂线的定义,画出,垂足为,点在线段的延长线上,
(3)点C到直线AB的距离即的长,网格的特点即可数出的长;
(4)根据同位角相等,两直线平行,或内错角相等,两直线平行即可得,即可知测量的角度
【详解】
解:(1)(2)如图所示,
(3)由网格可知
即点C到直线AB的距离是个单位长度
故答案为:2
(4)通过测量,可知
故答案为:,平行
【点睛】
本题考查了画线段,画垂线,平行线的性质与判定,点到直线的距离,掌握以上知识是解题的关键.
4、DEB;两直线平行,同位角相等;ACB;DEB;1;2;等量代换;同位角相等,两直线平行.
【分析】
依据平行线的性质以及角平分线的定义,即可得到∠1=∠2,进而判定CD∥EF.
【详解】
证明:∵AC∥DE,
∴∠ACB=∠DEB(两直线平行,同位角相等),
∵CD平分∠ACB,EF平分∠DEB,
∴,,
∴∠1=∠2,(等量代换)
∴CD∥EF(同位角相等,两直线平行).
故答案为:DEB;两直线平行,同位角相等;ACB;DEB;1;2;等量代换;同位角相等,两直线平行.
【点睛】
本题主要考查了平行线的性质与判定,平行线的判定是由角的数量关系判断两直线的位置关系;平行线的性质是由平行关系来寻找角的数量关系.
5、∠FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等
【分析】
利用平行线的判定,由已知得AB∥EF、AB∥CD,可推出EF∥CD,利用平行线的性质得结论
【详解】
解:∵∠A=120°,∠FEC=120°(已知),
∴∠A=∠FEC(等量代换),
∴AB∥EF(同位角相等,两直线平行),
又∵∠1=∠2(已知),
∴AB∥CD(内错角相等,两直线平行),
∴EF∥CD(平行于同一条直线的两直线互相平行),
∴∠FDG=∠EFD(两直线平行,内错角相等),
故答案为:∠FEC;等量代换;EF;同位角相等,两直线平行;内错角相等,两直线平行;CD;平行于同一条直线的两直线互相平行;两直线平行,内错角相等.
【点睛】
本题考查了平行线的性质和判定,学会分析,正确的利用平行线的性质和判定是解决本题的关键.下载本文