用“作高法”证明正弦定理,从逻辑上看,要对三角形分成三类:直角三角形、锐角三角形、钝角三角形加以证明,但从学生的认知上来看,学生首先关注的是垂足相对于边的位置关系,由此想到要对三角形进行分类.作高的认知根源是利用直角三角形的边角关系及正弦的定义.从基本概念出发,回归本源才能让学生从根本上学会思考.
2.实时反思,揭示多种证明方法之间的联系.
多种证明方法不是简单的罗列,而是有机的组织,形成联系,便于学生形成组织良好的认知结构.以三角形的高作为反思对象,提出一系列的问题,启发学生思考,着力培养学生联想、联系的能力.比较各种证明方法,概括出共同的要素--直角:作高是为了构造直角三角形;向量的数量积的本质是投影,含有隐性垂直关系;圆的直径所对的圆周角是直角.在教学中,以“直角”为核心,启发学生展开丰富的联想,激活所学的知识,形成多种不同的证明方法(作高法、等积法、外接圆法、向量法等),发展思维能力,提升核心素养.
3. 对学生证明不严谨的认识
教学中并没有直接对三角形分三类(直角、锐角、钝角)来证明,而是让学生自己来尝试证明.面对学生不严谨的证明,提出证明是否严谨这一疑问,引发学生的反思,因势利导,润物细无声地帮助学生从不严谨走向严谨.先抓住作高这一主要矛盾,再来进一步完善证明.
将数学冰冷的美丽,变成学生火热的思考,让学生明白分类的认知原因,从而学会分类、学会思考.
4. 对向量法证明正弦定理的认识
“向量法”与“作高法”的比较:
| 作高法 | 直观 | 容易想到 | 容易接受 |
| 向量法 | 抽象 | 不容易想到 | 不容易接受 |