视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
三角函数图像变换有哪些
2022-12-15 06:57:47 责编:小OO
文档


1、函数图像的左右平移变换

在同一坐标系下,用五点作图法做出函数y=sin(x+π/3)的图像,相当于把y=sinx整体向左平移π/3个单位;y=sin(x-π/4)的图像相当于把y=sinx整体向右平移π/4个单位。

由此得出结论:一般地,函数y=sin(x+φ)(φ≠0)的图像,可以看做是y=sinx的图像上所有的点向左(当φ>0时)或向右(当φ&0时)平行移动|φ|个单位得到的。

2、函数图象的横向伸缩变换

用五点作图法作出y=sin2x和y=sin1/2x的图像,发现y=sin2x是把y=sinx所有的横坐标都缩短为原来的1/2,y=sin1/2x是把y=sinx的所有横坐标都变为原来的2倍。

由此得出结论:y=sinωx(ω>0且ω≠1)的图像,可以看作是把y=sinx的图像上所有的点的横坐标缩短(当ω>1时)或伸长(当0&ω&1时)到原来的1/ω倍(纵坐标不变)而得到。

下载本文
显示全文
专题