为了保持MapReduce架构清晰,同时保留Map和Reduce结构。以便后续扩展。PS:写入HFile的时候,qualifier必须有序。 Mapper: import com.google.common.base.Strings;import org.apache.hadoop.hbase.io.ImmutableBytesWritable;import org.apache.hadoop.io.L
为了保持MapReduce架构清晰,同时保留Map和Reduce结构。以便后续扩展。PS:写入HFile的时候,qualifier必须有序。
Mapper:
import com.google.common.base.Strings; import org.apache.hadoop.hbase.io.ImmutableBytesWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; import yeepay.util.HBaseUtil; public class LoadMapper extends Mapper{ protected void map(LongWritable key, Text value, Context context) { try { String line = value.toString(); if (Strings.isNullOrEmpty(line)) { return; } String[] arr = line.split("\t", 9); if (arr.length != 9) { throw new RuntimeException("line.splite() not == 9"); } if (arr.length < 1) { return; } String k1 = arr[0]; ImmutableBytesWritable keyH = new ImmutableBytesWritable(HBaseUtil.getRowKey(k1)); context.write(keyH, new Text(line)); } catch (Exception e) { throw new RuntimeException(e); } } }
Reducer
import com.google.common.base.Splitter; import org.apache.hadoop.hbase.KeyValue; import org.apache.hadoop.hbase.io.ImmutableBytesWritable; import org.apache.hadoop.hbase.util.Bytes; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Reducer; import java.util.Iterator; import java.util.Map; import java.util.TreeMap; public class LoadReducer extends ReducerJob&BulkLoad{ final static String[] fileds = new String[]{ "ID", "A_ACCOUNT_ID", "A_TRX_ID", "P_ID", "P_TRXORDER_ID", "P_FRP_ID", "O_PRODUCTCAT", "O_RECEIVER_ID", "O_REQUESTID" }; @Override public void reduce(ImmutableBytesWritable rowkey, Iterable values, Context context) throws java.io.IOException, InterruptedException { // super.setID(stringArray[0]); // this.A_ACCOUNT_ID = stringArray[1]; // this.A_TRX_ID = stringArray[2]; // this.P_ID = stringArray[3]; // this.P_TRXORDER_ID = stringArray[4]; // this.P_FRP_ID = stringArray[5]; // this.O_PRODUCTCAT = stringArray[6]; // this.O_RECEIVER_ID = stringArray[7]; // this.O_REQUESTID = stringArray[8]; try { Text vv = values.iterator().next(); String vs = vv.toString(); Splitter splitter = Splitter.on("\t").limit(9); Iterable iterable = splitter.split(vs); Iterator iterator = iterable.iterator(); // String[] arr = vs.split("\\t", 9); int i = 0; // Put put = new Put(rowkey.get()); /** * 值的写入必须按照顺序。 */ Map map = new TreeMap (); while (iterator.hasNext()) { map.put(fileds[i++], iterator.next()); } for (Map.Entry entry : map.entrySet()) { KeyValue kv = new KeyValue(rowkey.copyBytes(), Bytes.toBytes("f"), entry.getKey().getBytes(), 0L, entry.getValue().getBytes()); context.write(rowkey, kv); } } catch (Exception e) { new RuntimeException(e); } } }
package yeepay.load;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.client.HTable;
import org.apache.hadoop.hbase.io.ImmutableBytesWritable;
import org.apache.hadoop.hbase.mapreduce.HFileOutputFormat;
import org.apache.hadoop.hbase.mapreduce.LoadIncrementalHFiles;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import yeepay.util.HdfsUtil;
import yeepay.util.YeepayConstant;
import java.util.Date;
public abstract class AbstractJobBulkLoad {
public static Configuration conf = HBaseConfiguration.create();
public void run(String[] args) throws Exception {
if (args.length < 2) {
System.err.println("please set input dir");
System.exit(-1);
return;
}
String txtPath = args[0];
String tableName = args[1];
Job job = new Job(conf, "txt2HBase");
HTable htable = null;
try {
htable = new HTable(conf, tableName); //set table name
// 根据region的数量来决定reduce的数量以及每个reduce覆盖的rowkey范围
HFileOutputFormat.configureIncrementalLoad(job, htable);
htable.close();
job.setJarByClass(AbstractJobBulkLoad.class);
FileSystem fs = FileSystem.get(conf);
System.out.println("input file :" + txtPath);
Path inputFile = new Path(txtPath);
if (!fs.exists(inputFile)) {
System.err.println("inputFile " + txtPath + " not exist.");
throw new RuntimeException("inputFile " + txtPath + " not exist.");
}
FileInputFormat.addInputPath(job, inputFile);
//
job.setMapperClass(getMapperClass());
job.setMapOutputKeyClass(ImmutableBytesWritable.class);
job.setMapOutputValueClass(Text.class);
job.setInputFormatClass(TextInputFormat.class);
//
job.setReducerClass(getReducerClass());
Date now = new Date();
Path output = new Path("/output/" + tableName + "/" + now.getTime());
System.out.println("/output/" + tableName + "/" + now.getTime());
FileOutputFormat.setOutputPath(job, output);
job.waitForCompletion(true);
//执行BulkLoad
HdfsUtil.chmod(conf, output.toString());
HdfsUtil.chmod(conf, output + "/" + YeepayConstant.COMMON_FAMILY);
htable = new HTable(conf, tableName);
new LoadIncrementalHFiles(conf).doBulkLoad(output, htable);
htable.close();
System.out.println("HFile data load success!");
System.out.println(getJobName() + " end!");
} catch (Throwable t) {
throw new RuntimeException(t);
}
}
protected abstract Class getMapperClass();
protected abstract Class getReducerClass();
protected abstract String getTableName();
protected abstract String getJobName();
}
下载本文