视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
NoSQL数据库学习之MongoDB之groupby
2020-11-09 16:21:33 责编:小采
文档


NoSQL数据库学习之MongoDB之group by 如果你用group 命令的话可能会遇到下面两种错误: www.2cto.com a.)命令:db.flogsamplelog.group({cond:{datetimes:20111027},key:{pid:1},initial:{count:0},reduce:function(doc,prev){if(doc.pid==prev.pid)prev


NoSQL数据库学习之MongoDB之group by

如果你用group 命令的话可能会遇到下面两种错误:

www.2cto.com

a.)命令:db.flogsamplelog.group({cond:{datetimes":20111027},key:{"pid":"1"},initial:{"count":0},reduce:function(doc,prev){if(doc.pid==prev.pid)prev.count++;}})

error:

Mon Oct 31 12:00:00uncaught exception: group command failed: {

"errmsg" : "exception: group() can't handle more than 10000 unique keys",

"code" : 10043,

"ok" : 0

} 直接访问shard server端口

b.)命令:db.flogsamplelog.group({cond:{"pid":322963713,"datetimes":20111027},key:{"worktype":"1"},initial:{"count":0},reduce:function(doc,prev){if(doc.worktype==prev.worktype)prev.count++;}})

error:

Mon Oct 31 12:00:09 uncaught exception: group command failed: { "ok" : 0, "errmsg" : "can't do command: group on sharded collection" } 直接访问route server端口

其次我们在mongodb权威指南上也能发现这样的语句:

The price of using MapReduce is speed: group is not particularly speedy, but

MapReduce is slower and is not supposed to be used in “real time.” You run

MapReduce as a background job, it creates a collection of results, and then

you can query that collection in real time.

经过测试发现group by效率在建立索引之后也没有实质性提高。

具体命令中涉及到的字段以及表定义,这里就不在敷衍。

下载本文
显示全文
专题