视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
机器学习系列(2):logistic回归,贝叶斯(bayes)方法
2020-11-09 15:41:31 责编:小采
文档

前言: 这章主要介绍logistic回归和bayes法。两者都属分类,前者引入了logistic函数,后者引入了贝叶斯定理,都是比较基础的数学知识。 但是logistic无需先验的训练样本,后者需要。 贝叶斯法很强大,很多邮件、网页筛选都有用到,这里只介绍朴素bayes法。理

前言:这章主要介绍logistic回归和bayes法。两者都属分类,前者引入了logistic函数,后者引入了贝叶斯定理,都是比较基础的数学知识。

但是logistic无需先验的训练样本,后者需要。

贝叶斯法很强大,很多邮件、网页筛选都有用到,这里只介绍朴素bayes法。理解其关键在于应用中条件概率的提取。

引用《机器学习》上的一句话:

“在特定前提下,任一学习算法如果使输出的假设预测和训练数据之间的误差平方最小化,它将输出一极大似然假设。”

正文:

后续:对于logistic回归,最后梯度下降法计算最小J(x)详细解法可见参考资料1.

Logistic回归就是要学习得到,使得正例的特征远大于0,负例的特征远小于0,强调在全部训练实例上达到这个目标

对于bayes法,例题见参考资料2.

参考资料:1.logistic回归,讲的很详细

2.bayes法,一步步都很清楚

3.贝叶斯方法的理解,数学之美

4.bayes法的概念有好的介绍

下载本文
显示全文
专题