视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
NormalizationVSDenormalization[转]
2020-11-09 09:45:03 责编:小采
文档


Denormalizationis the process of attempting to optimize the read performance of adatabaseby adding redundant data or by grouping data.In some cases, denormalization helps cover up the inefficiencies inherent inrelationaldatabase software.

Denormalization is the process of attempting to optimize the read performance of a database by adding redundant data or by grouping data. In some cases, denormalization helps cover up the inefficiencies inherent in relational database software. A relational normalized database imposes a heavy access load over physical storage of data even if it is well tuned for high performance.

A normalized design will often store different but related pieces of information in separate logical tables (called relations). If these relations are stored physically as separate disk files, completing a database query that draws information from several relations (a join operation) can be slow. If many relations are joined, it may be prohibitively slow. There are two strategies for dealing with this. The preferred method is to keep the logical design normalized, but allow the database management system (DBMS) to store additional redundant information on disk to optimize query response. In this case it is the DBMS software's responsibility to ensure that any redundant copies are kept consistent. This method is often implemented in SQL as indexed views (Microsoft SQL Server) ormaterialized views (Oracle). A view represents information in a format convenient for querying, and the index ensures that queries against the view are optimized.

The more usual approach is to denormalize the logical data design. With care this can achieve a similar improvement in query response, but at a cost—it is now the database designer's responsibility to ensure that the denormalized database does not become inconsistent. This is done by creating rules in the database called constraints, that specify how the redundant copies of information must be kept synchronized. It is the increase in logical complexity of the database design and the added complexity of the additional constraints that make this approach hazardous. Moreover, constraints introduce a trade-off, speeding up reads (SELECT in SQL) while slowing down writes (INSERT, UPDATE, and DELETE). This means a denormalized database under heavy write load may actually offerworse performance than its functionally equivalent normalized counterpart.

A denormalized data model is not the same as a data model that has not been normalized, and denormalization should only take place after a satisfactory level of normalization has taken place and that any required constraints and/or rules have been created to deal with the inherent anomalies in the design. For example, all the relations are in third normal form and any relations with join and multi-valued dependencies are handled appropriately.

Examples of denormalization techniques include:

  • Materialized views, which may implement the following:
  • Storing the count of the "many" objects in a one-to-many relationship as an attribute of the "one" relation
  • Adding attributes to a relation from another relation with which it will be joined
  • Star schemas, which are also known as fact-dimension models and have been extended to snowflake schemas
  • Prebuilt summarization or OLAP cubes
  • Denormalization techniques are often used to improve the scalability of Web applications.]

    原文地址:

    Example: a shopping cart order

    Suppose that we are designing a schema for a shopping cart application. Our application

    stores orders in MongoDB, but what information should an order contain?

    Normalized schema

    A product: { : productId, : name, : price, : description } An order: { : orderId, : userInfo, : [ productId1, productId2, productId3 ] } ,美国服务器,美国空间,虚拟主机

    下载本文
    显示全文
    专题