视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
MySQL存储时间类型选择的问题讲解
2020-11-09 21:16:19 责编:小采
文档


执行mysql

mysql> select * from test_datetime into outfile ‘/tmp/test_datetime.sql';
Query OK, 10000000 rows affected (6.19 sec)

mysql> select * from test_timestamp into outfile ‘/tmp/test_timestamp.sql';
Query OK, 10000000 rows affected (8.75 sec)

mysql> select * from test_int into outfile ‘/tmp/test_int.sql';
Query OK, 10000000 rows affected (4.29 sec)

alter table test_datetime rename test_int;
alter table test_int add column datetimeint INT NOT NULL;
update test_int set datetimeint = UNIX_TIMESTAMP(datetime);
alter table test_int drop column datetime;
alter table test_int change column datetimeint datetime int not null;
select * from test_int into outfile ‘/tmp/test_int2.sql';
drop table test_int;

So now I have exactly the same timestamps from the DATETIME test, and it will be possible to reuse the originals for TIMESTAMP tests as well.

mysql> load data infile ‘/export/home/ntavares/test_datetime.sql' into table test_datetime;
Query OK, 10000000 rows affected (41.52 sec)
Records: 10000000 Deleted: 0 Skipped: 0 Warnings: 0

mysql> load data infile ‘/export/home/ntavares/test_datetime.sql' into table test_timestamp;
Query OK, 10000000 rows affected, 44 warnings (48.32 sec)
Records: 10000000 Deleted: 0 Skipped: 0 Warnings: 44

mysql> load data infile ‘/export/home/ntavares/test_int2.sql' into table test_int;
Query OK, 10000000 rows affected (37.73 sec)
Records: 10000000 Deleted: 0 Skipped: 0 Warnings: 0

As expected, since INT is simply stored as is while the others have to be recalculated. Notice how TIMESTAMP still performs worse, even though uses half of DATETIME storage size.

Let's check the performance of full table scan:

mysql> SELECT SQL_NO_CACHE count(id) FROM test_datetime WHERE datetime > ‘1970-01-01 01:30:00′ AND datetime < ‘1970-01-01 01:35:00′;
+———–+
| count(id) |
+———–+
| 211991 |
+———–+
1 row in set (3.93 sec)

mysql> SELECT SQL_NO_CACHE count(id) FROM test_timestamp WHERE datetime > ‘1970-01-01 01:30:00′ AND datetime < ‘1970-01-01 01:35:00′;
+———–+
| count(id) |
+———–+
| 211991 |
+———–+
1 row in set (9.87 sec)

mysql> SELECT SQL_NO_CACHE count(id) FROM test_int WHERE datetime > UNIX_TIMESTAMP('1970-01-01 01:30:00′) AND datetime < UNIX_TIMESTAMP('1970-01-01 01:35:00′);
+———–+
| count(id) |
+———–+
| 211991 |
+———–+
1 row in set (15.12 sec)

Then again, TIMESTAMP performs worse and the recalculations seemed to impact, so the next good thing to test seemed to be without those recalculations: find the equivalents of those UNIX_TIMESTAMP() values, and use them instead:

mysql> select UNIX_TIMESTAMP('1970-01-01 01:30:00′) AS lower, UNIX_TIMESTAMP('1970-01-01 01:35:00′) AS bigger;
+——-+——–+
| lower | bigger |
+——-+——–+
| 1800 | 2100 |
+——-+——–+
1 row in set (0.00 sec)

mysql> SELECT SQL_NO_CACHE count(id) FROM test_int WHERE datetime > 1800 AND datetime < 2100;
+———–+
| count(id) |
+———–+
| 211991 |
+———–+
1 row in set (1.94 sec)

Innodb:MySQL DATETIME vs TIMESTAMP vs INT performance and benchmarking with InnoDB

总结

下载本文
显示全文
专题