视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
使用batchinsert解决MySQL的insert吞吐量问题_MySQL
2020-11-09 19:26:42 责编:小采
文档
 最近使用了一个非常简单易用的方法解决了业务上的一个insert吞吐量的问题,在此总结一下。

首先我们明确一下,insert吞吐量其实并不是指的IPS(insert per second),而是指的RPS(effect rows per second)。

其次我们再说一下batch insert,其实顾名思义,就是批量插入。这种优化思想是很基本的,MySQL中最出名的应用就是group commit。

简单的来说,就是将SQL A 变成 SQL B

SQL A : insert into table values ($values);SQL B : insert into table values ($values),($values)...($values);

下面,我们来看看这种异常简单的改动会带来什么样子的变化。

测试环境交代:单id的表结构,10w个int values,本地使用socket连接MySQL server,使用shell单进程测试。

首先,我们看下使用SQL A将10w个int values插入到test表中所需的耗时,耗时1777秒。

real 29m37.090suser 9m11.705ssys 5m0.762s

然后,我们看下使用SQL B(每次insert,插入10 values)将10w个int values插入到test表中所需的耗时,耗时53秒

real 0m53.871suser 0m19.455ssys 0m6.285s

这是整整近33倍的时间提升。这部分性能提升的原因在于以下几点:

1、每次和MySQL server建立连接都需要经过各种初始化、权限认证,语法解析等等多个步骤,需要消耗一定的资源。

2、更新一个values和更新n个values耗时基本一致。(下面对比一下insert 单values核insert 10 values的profile耗时)

单values:
+------------------------------+----------+| Status | Duration |+------------------------------+----------+| starting | 0.000056 || checking permissions | 0.000010 || Opening tables | 0.000034 || System lock | 0.000010 || init | 0.000011 || update | 0.000061 || Waiting for query cache lock | 0.000003 || update | 0.000015 || end | 0.000003 || query end | 0.000053 || closing tables | 0.000009 || freeing items | 0.000021 || logging slow query | 0.000002 || cleaning up | 0.000003 |+------------------------------+----------+
10 values:+------------------------------+----------+| Status | Duration |+------------------------------+----------+| starting | 0.000061 || checking permissions | 0.000008 || Opening tables | 0.000027 || System lock | 0.000008 || init | 0.000012 || update | 0.000073 || Waiting for query cache lock | 0.000003 || update | 0.000010 || end | 0.000008 || query end | 0.000053 || closing tables | 0.000010 || freeing items | 0.000021 || logging slow query | 0.000002 || cleaning up | 0.000003 |+------------------------------+----------+

但是,是否values积攒的越多,效率越高吗? 答案自然是否定的,任何优化方案都不会是纯线性的,肯定会在某个条件下出现拐点。

我们按照不同的values number进行测试,分别为1、10、50、100、200、500、1000、5000、10000.

从下图我们可以看出,随着values number的增加,耗时先是急剧下降,从1777s变成53s,然后在增加values number就不会有太大的变化,直到values number超过200,最后的10000个values number耗时达到了2分钟。

从下图我们可以看到随着values numbers的增加,QPS(蓝线)先是猛增,然后下降,最终小于1/s。而RPS(绿线)随着增加猛增到一个高level,然后随着增加逐步下降,超过5000个values number之后开始急剧下降。

另,最关键的是,QPS最高峰和RPS的最高峰并不在同一个values number下,也就是说QPS最高的时候并不代表着insert的吞吐量就最高。

在我这个简单测试场景中,values number最合适的值是50,和单values对比,耗时减少97%,insert吞吐量提升36倍。

而这个值和表结构和字段类型及大小都有关系。需要根据不同的场景进行测试之后才可以得出,但是普遍来说,50-100是比较推荐的考虑值。

至于这个如何实现,只要前端写入的时候加入队列即可,可以按照2个条件进行合并

  • 队列中积攒到n个values number后在写入数据库,优点是性能最高,缺点是时间不可控,有可能等到第n个需要n秒,这时候业务已经不可接收了。
  • 队列中积攒1s之后,有多少个就写入多少个,优点是时间可控,缺点就是values number数目不可能,高并发的情况,可能1s已经积攒上千个values了。
  • 最优的方案其实是2个条件同时起作用,即进行个数效验,也进行时间效验,无论达到那个条件都触发后续写数据库操作。
  • 总结:

    1、使用batch insert可以提高insert的吞吐量。

    2、叠加的values number需要根据实际情况测试得出。

    3、同时使用个数和时间控制阀值。

    附简单测试的记录值:

    ValuesNum

    Time

    QPS

    Rows

    1

    1777

    56

    56

    10

    53

    188

    1886

    50

    49

    40

    2040

    100

    50

    19

    2000

    200

    51

    10

    1960

    500

    57

    3

    1754

    1000

    60

    2

    1666

    5000

    69

    0.3

    1449

    10000

    133

    0.07

    751

    下载本文
    显示全文
    专题