视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
courseraMachineLearningWeek3-2学习笔记
2020-11-09 07:27:28 责编:小采
文档


Part 7:Regularition 在机器学习中一个很重要的问题就是程序可能会产生overfitting的情况,什么是overfitting?just see below: overfitting就是程序针对所给出的训练集找到了一条曲线,能够把训练集几乎完美的分为2个部分,但是这条曲线过于复杂,并且失去

Part 7:Regularition

在机器学习中一个很重要的问题就是程序可能会产生overfitting的情况,什么是overfitting?just see below:


overfitting就是程序针对所给出的训练集找到了一条曲线,能够把训练集几乎完美的分为2个部分,但是这条曲线过于复杂,并且失去了对新的元组预测的准确度。这种情况是非常有可能出现的,因为在逻辑回归中,如果元组X的属性值很多,那么很有可能拟合出来的曲线就会非常的复杂。那么如何避免这样的情况的发生?视频中给出了2个方法,第一个就是降低数据的维度,选取少部分真正能代表数据特征的几个维度来进行逻辑回归的计算;第二个就是正规化(Regularition),保留所有的维度,但是降低参数θj的大小。这种方法具体的实现如下:


在原来的代价函数上增加了对于参数θj本身大小的影响,使得最后得出的参数θ的大小尽可能的小,这样就不会过分的放大每个属性对于最终的输出的影响而导致函数过于复杂化。然后我们将regularition应用到线性回归,代价函数上面已列出,下面列出使用梯度下降法时的更新公式(基本的公式不变,修改了一下求出偏导之后的公式):

使用最小二乘法时的公式:

至于将regularition应用到逻辑回归,基本和线性回归一致,不再重新给出具体的公式了。

下载本文
显示全文
专题