视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
ImportTsv-HBase数据导入工具
2020-11-09 07:50:51 责编:小采
文档


HBase官方提供了基于Mapreduce的批量数据导入工具:Bulk load和ImportTsv。关于Bulk load大家可以看下我另一篇http://www.linuxi

一、概述

HBase官方提供了基于Mapreduce的批量数据导入工具:Bulk load和ImportTsv。关于Bulk load大家可以看下我另一篇。

通常HBase用户会使用HBase API导数,但是如果一次性导入大批量数据,可能占用大量Regionserver资源,影响存储在该Regionserver上其他表的查询,本文将会从源码上解析ImportTsv数据导入工具,探究如何高效导入数据到HBase。

二、ImportTsv介绍

ImportTsv是Hbase提供的一个命令行工具,可以将存储在HDFS上的自定义分隔符(默认\t)的数据文件,通过一条命令方便的导入到HBase表中,对于大数据量导入非常实用,其中包含两种方式将数据导入到HBase表中:

第一种是使用TableOutputformat在reduce中插入数据;

第二种是先生成HFile格式的文件,再执行一个叫做CompleteBulkLoad的命令,将文件move到HBase表空间目录下,同时提供给client查询。

三、源码解析

本文基于CDH5 HBase0.98.1,ImportTsv的入口类是org.apache.Hadoop.hbase.mapreduce.ImportTsv

String hfileOutPath = conf.get(BULK_OUTPUT_CONF_KEY);
String columns[] = conf.getStrings(COLUMNS_CONF_KEY);
if (hfileOutPath != null) {
if (!admin.tableExists(tableName)) {
LOG.warn(format("Table '%s' does not exist.", tableName));
// TODO: this is backwards. Instead of depending on the existence of a table,
// create a sane splits file for HFileOutputFormat based on data sampling.
createTable(admin, tableName, columns);
}
HTable table = new HTable(conf, tableName);
job.setReducerClass(PutSortReducer.class);
Path outputDir = new Path(hfileOutPath);
FileOutputFormat.setOutputPath(job, outputDir);
job.setMapOutputKeyClass(ImmutableBytesWritable.class);
if (mapperClass.equals(TsvImporterTextMapper.class)) {
job.setMapOutputValueClass(Text.class);
job.setReducerClass(TextSortReducer.class);
} else {
job.setMapOutputValueClass(Put.class);
job.setCombinerClass(PutCombiner.class);
}
HFileOutputFormat.configureIncrementalLoad(job, table);
} else {
if (mapperClass.equals(TsvImporterTextMapper.class)) {
usage(TsvImporterTextMapper.class.toString()
+ " should not be used for non bulkloading case. use "
+ TsvImporterMapper.class.toString()
+ " or custom mapper whose value type is Put.");
System.exit(-1);
}
// No reducers. Just write straight to table. Call initTableReducerJob
// to set up the TableOutputFormat.
TableMapReduceUtil.initTableReducerJob(tableName, null, job);
job.setNumReduceTasks(0);
}

从ImportTsv.createSubmittableJob方法中判断参数BULK_OUTPUT_CONF_KEY开始,这步直接影响ImportTsv的Mapreduce作业最终以哪种方式入HBase库

如果不为空并且用户没有自定义Mapper实现类(参数importtsv.mapper.class)时,则使用PutSortReducer,其中会对Put排序,如果每行记录有很多column,则会占用Reducer大量的内存资源进行排序。

Configuration conf = job.getConfiguration();
HBaseConfiguration.merge(conf, HBaseConfiguration.create(conf));
job.setOutputFormatClass(TableOutputFormat.class);

如果为空,调用TableMapReduceUtil.initTableReducerJob初始化TableOutputformat的Reducer输出,此方式不需要使用Reducer,因为直接在mapper的Outputformat中会批量的调用Put API将数据提交到Regionserver上(相当于并行的执行HBase Put API)

四、实战

1、使用TableOutputformat的Put API上传数据,非bulk-loading

$ bin/hbase org.apache.hadoop.hbase.mapreduce.ImportTsv -Dimporttsv.columns=a,b,c

2、使用bulk-loading生成StoreFiles(HFile)

step1、生成Hfile

$ bin/hbase org.apache.hadoop.hbase.mapreduce.ImportTsv -Dimporttsv.columns=a,b,c -Dimporttsv.bulk.output=hdfs://storefile-outputdir

step2、完成导入

$ bin/hbase org.apache.hadoop.hbase.mapreduce.LoadIncrementalHFiles

五、总结

在使用ImportTsv时,,一定要注意参数importtsv.bulk.output的配置,通常来说使用Bulk output的方式对Regionserver来说更加友好一些,这种方式加载数据几乎不占用Regionserver的计算资源,因为只是在HDFS上移动了HFile文件,然后通知HMaster将该Regionserver的一个或多个region上线。

Hadoop+HBase搭建云存储总结 PDF

HBase 结点之间时间不一致造成regionserver启动失败

Hadoop+ZooKeeper+HBase集群配置

Hadoop集群安装&HBase实验环境搭建

基于Hadoop集群的HBase集群的配置 ‘

Hadoop安装部署笔记之-HBase完全分布模式安装

单机版搭建HBase环境图文教程详解

HBase 的详细介绍:请点这里
HBase 的下载地址:请点这里

下载本文
显示全文
专题