视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
pt-query-digest使用介绍
2020-11-09 12:55:51 责编:小采
文档


一、pt-query-digest参数介绍. pt-query-digest --user=anemometer --password=anemometerpass --review h=192.168.11.28,D=slow_query_log,t=global_query_review \ --history h=192.168.11.28,D=slow_query_log,t=global_query_review_history \ --no-repo

一、pt-query-digest参数介绍.

 pt-query-digest --user=anemometer --password=anemometerpass --review h=192.168.11.28,D=slow_query_log,t=global_query_review \
 --history h=192.168.11.28,D=slow_query_log,t=global_query_review_history \
 --no-report --limit=0% --filter=" \$event->{Bytes} = length(\$event->{arg}) and \$event->{hostname}=\"$HOSTNAME\"" \
 /usr/local/mariamysql/data/localhost-slow.log
 

–filter 对输入的慢查询按指定的字符串进行匹配过滤后再进行分析
–limit输出结果百分比或数量,默认值是20,即将最慢的20条语句输出,如果是50%则按总响应时间占比从大到小排序,输出到总和达到50%位置截止。
–host mysql服务器地址
–user mysql用户名
–password mysql用户密码
–history 将分析结果保存到表中,分析结果比较详细,下次再使用–history时,如果存在相同的语句,且查询所在的时间区间和历史表中的不同,则会记录到数据表中,可以通过查询同一CHECKSUM来比较某类型查询的历史变化。
–review 将分析结果保存到表中,这个分析只是对查询条件进行参数化,一个类型的查询一条记录,比较简单。当下次使用–review时,如果存在相同的语句分析,就不会记录到数据表中。
–output 分析结果输出类型,值可以是report(标准分析报告)、slowlog(Mysql slow log)、json、json-anon,一般使用report,以便于阅读。
–since 从什么时间开始分析,值为字符串,可以是指定的某个”yyyy-mm-dd [hh:mm:ss]”格式的时间点,也可以是简单的一个时间值:s(秒)、h(小时)、m(分钟)、d(天),如12h就表示从12小时前开始统计。
–until 截止时间,配合—since可以分析一段时间内的慢查询。

二、分析结果分析:

#pt-query-digest mysql-slow.log
--分析mysql-slow.log这个慢查询日志文件
# A software update is available:
# * The current version for Percona::Toolkit is 2.2.9.
开始总的摘要信息
# 170ms user time, 10ms system time, 26.00M rss, 213.39M vsz
--此工具执行日志分析时的所用时间、内存资源(rss物理内存占用大小,vsz虚拟内存占用大小)
# Current date: Mon Jul 28 09:55:34 2014
--分析时的系统时间
# Hostname: lump.group.com
--进行分析的主机名,非记录日志的数据库服务器
# Files: mysql-slow.log
--分析的日志文件名称
# Overall: 5 total, 4 unique, 0.02 QPS, 0.04x concurrency ________________
--文件中总共的语句数量,唯一的语句数量(对语句进行了格式化),QPS,并发数
# Time range: 2014-07-28 09:50:30 to 09:54:50
--记录日志的时间范围
# Attribute total min max avg 95% stddev median
--total总计,min最小,max最大,avg平均,95%把所有值从小到大排列,位于95%的那个数
# ============ ======= ======= ======= ======= ======= ======= =======
# Exec time 10s 1s 3s 2s 3s 753ms 1s
# Lock time 196us 0 79us 39us 76us 33us 42us
# Rows sent 1.40k 0 716 287 685.39 335.14 3.
# Rows examine 15.32k 0 11.13k 3.06k 10.80k 4.02k 2.06k
# Rows affecte 0 0 0 0 0 0 0
# Bytes sent 72.42k 11 38.85k 14.48k 38.40k 17.57k 234.30
# Query size 807 6 342 161.40 329.68 146.53 112.70

–Exec time:语句执行时间
–Lock time:锁占有时间
–Rows sent:发送到客户端的行数
–Row examine:扫描的行数(SELECT语句)
–Row affecte:发送改变的行数(UPDATE, DELETE, INSERT语句)
–Bytes sent:发送多少bytes的查询结果集
–Query size:查询语句的字符数

查询分组统计结果

# Profile
# Rank Query ID Response time Calls R/Call V/M Item
# ==== ================== ============= ===== ====== ===== ===============
# 1 0x4A9CF4735A0490F2 3.18 31.9% 1 3.18 0.00 SELECT history_uint
# 2 0x2B0044BDE0960A2F 2.6991 27.0% 1 2.6991 0.00 SELECT history
# 3 0x813031B8BBC3B329 2.5755 25.7% 2 1.2877 0.00 COMMIT
# 4 0x469563A79E581DDB 1.5380 15.4% 1 1.5380 0.00 SELECT sessions

–Rank:分析的所有查询语句的排名,默认按查询时间降序排序,可以通过–order-by指定排序方式
–Query ID:查询语句的指纹,去掉了多余空格、和文本字符
–Response time:响应时间,占所有响应时间的百分比
–Calls:查询执行的次数
–R/Call:每次执行的平均响应时间
–V/M:响应时间Variance-to-mean的比率,参考:http://en.wikipedia.org/wiki/Index_of_dispersion
–Item:查询语句
–最后一行没有包括在报告中的查询合计统计信息,如使用了选项–limit和–outliers

每个查询语句的分析

# Query 1: 0 QPS, 0x concurrency, ID 0x4A9CF4735A0490F2 at byte 591 ______
--QPS:每秒查询数(queries per second)
--concurrency:该查询的近似并发值
--ID:16进制,查询语句的指纹,去掉了多余空格、和文本字符、转换成小写,使用--filter可以用来进行过滤(如:pt-query-digest mysql-slow.201407250000 --filter '$event->{fingerprint} && make_checksum($event->{fingerprint}) eq "0793E2F7F5EBE1B1"' > slow2.txt),必须移除0x
--at byte 2141:查询语句在日志文件中的偏移量(byte offset),不一定精确,根据偏移量在日志文件中查找语句(如tail -c +2141 mysql-slow.201407250000 |head)
# This item is included in the report because it matches --limit.
# Scores: V/M = 0.00
# Time range: all events occurred at 2014-07-28 09:51:02
# Attribute pct total min max avg 95% stddev median
--95%:95th percentile,stddev:standard deviation
# ============ === ======= ======= ======= ======= ======= ======= =======
# Count 20 1
--pct在整个日志文件中,执行语句占用百分比(20%),总计执行了1次
# Exec time 31 3s 3s 3s 3s 3s 0 3s
# Lock time 40 79us 79us 79us 79us 79us 0 79us
# Rows sent 49 715 715 715 715 715 0 715
# Rows examine 13 2.09k 2.09k 2.09k 2.09k 2.09k 0 2.09k
# Rows affecte 0 0 0 0 0 0 0 0
# Bytes sent 45 33.31k 33.31k 33.31k 33.31k 33.31k 0 33.31k
# Query size 42 342 342 342 342 342 0 342
# String:
# Databases zabbix
--数据库名
# Hosts
# Last errno 0
# Users zabbix
--执行语句的用户名
# Query_time distribution
--查询的执行时间分布情况图,可以使用选项--report-histogram进行定义
# 1us
# 10us
# 100us
# 1ms
# 10ms
# 100ms
# 1s ################################################################
# 10s+
# Tables
# SHOW TABLE STATUS FROM `zabbix` LIKE 'history_uint'\G
--可以使用该语句查询表的统计信息,如大小
# SHOW CREATE TABLE `zabbix`.`history_uint`\G
--可以使用该语句查看表的结构信息
# EXPLAIN /*!50100 PARTITIONS*/
SELECT itemid,round(1401* MOD(CAST(clock AS UNSIGNED)+79742,800)/(800),0) AS i,COUNT(*) AS count,AVG(value) AS avg,MIN(value) AS min,MAX(value) AS max,MAX(clock) AS clock FROM history_uint WHERE itemid='30376' AND clock>='14025858' AND clock<='1406512258' GROUP BY itemid,round(1401* MOD(CAST(clock AS UNSIGNED)+79742,800)/(800),0)\G
--可以使用该语句查看查询计划,如非select语句,工具会转换成类似的select语句,方便进行explain

参考:
1、"pt-query-digest":http://www.percona.com/doc/percona-toolkit/2.2/pt-query-digest.html

下载本文
显示全文
专题