视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
HadoopHelloWordExamples-求平均数
2020-11-09 13:19:04 责编:小采
文档


? 另外一个hadoop的入门demo,求平均数。是对WordCount这个demo的一个小小的修改。输入一堆成绩单(人名,成绩),然后求每个人成绩平均数,比如: //? subject1.txt ? a 90 ? b 80 ? c 70 ?// subject2.txt ? a 100 ? b 90 ? c 80 ? 求a,b,c这三个人的平均

? 另外一个hadoop的入门demo,求平均数。是对WordCount这个demo的一个小小的修改。输入一堆成绩单(人名,成绩),然后求每个人成绩平均数,比如:

//? subject1.txt

? a 90
? b 80
? c 70


?// subject2.txt

? a 100
? b 90
? c 80


? 求a,b,c这三个人的平均分。解决思路很简单,在map阶段key是名字,value是成绩,直接output。reduce阶段得到了map输出的key名字,values是该名字对应的一系列的成绩,那么对其求平均数即可。

? 这里我们实现了两个版本的代码,分别用TextInputFormat和 KeyValueTextInputFormat来作为输入格式。

? TextInputFormat版本:

?

import java.util.*;
import java.io.*;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class AveScore {
	public static class AveMapper extends Mapper
	{
	@Override
	public void map(Object key, Text value, Context context) throws IOException, InterruptedException
	{
	String line = value.toString();
	String[] strs = line.split(" ");
	String name = strs[0];
	int score = Integer.parseInt(strs[1]);
	context.write(new Text(name), new IntWritable(score));
	}
	}
	public static class AveReducer extends Reducer
	{
	@Override
	public void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException
	{
	int sum = 0;
	int count = 0;
	for(IntWritable val : values)
	{
	sum += val.get();
	count++;
	}
	int aveScore = sum / count;
	context.write(key, new IntWritable(aveScore));
	}
	}
	public static void main(String[] args) throws Exception
	{
	Configuration conf = new Configuration();
	Job job = new Job(conf,"AverageScore");
	job.setJarByClass(AveScore.class);
	job.setMapperClass(AveMapper.class);
	job.setReducerClass(AveReducer.class);
	job.setOutputKeyClass(Text.class);
	job.setOutputValueClass(IntWritable.class);
	FileInputFormat.addInputPath(job, new Path(args[0]));
	FileOutputFormat.setOutputPath(job, new Path(args[1]));
	System.exit( job.waitForCompletion(true) ? 0 : 1);
	}
}

KeyValueTextInputFormat版本;

import java.util.*;
import java.io.*;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.input.KeyValueTextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
public class AveScore_KeyValue {
	public static class AveMapper extends Mapper
	{
	@Override
	public void map(Text key, Text value, Context context) throws IOException, InterruptedException
	{
	 int score = Integer.parseInt(value.toString());
	context.write(key, new IntWritable(score) );
	}
	}
	public static class AveReducer extends Reducer
	{
	@Override
	public void reduce(Text key, Iterable values, Context context) throws IOException, InterruptedException
	{
	int sum = 0;
	int count = 0;
	for(IntWritable val : values)
	{
	sum += val.get();
	count++;
	}
	int aveScore = sum / count;
	context.write(key, new IntWritable(aveScore));
	}
	}
	public static void main(String[] args) throws Exception
	{
	Configuration conf = new Configuration();
	conf.set("mapreduce.input.keyvaluelinerecordreader.key.value.separator", " ");
	Job job = new Job(conf,"AverageScore");
	job.setJarByClass(AveScore_KeyValue.class);
	job.setMapperClass(AveMapper.class);
	job.setReducerClass(AveReducer.class);
	job.setOutputKeyClass(Text.class);
	job.setOutputValueClass(IntWritable.class);
 	job.setInputFormatClass(KeyValueTextInputFormat.class);
	job.setOutputFormatClass(TextOutputFormat.class) ; 
	FileInputFormat.addInputPath(job, new Path(args[0]));
	FileOutputFormat.setOutputPath(job, new Path(args[1]));
	System.exit( job.waitForCompletion(true) ? 0 : 1);
	}
}


输出结果为:

? a 95
? b 85
? c 75

?

作者:qiul12345 发表于2013-8-23 21:51:03 原文链接

阅读:113 评论:0 查看评论

下载本文
显示全文
专题