视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
requests和lxml实现爬虫的实例教程
2020-11-27 14:23:57 责编:小采
文档


# requests模块来请求页面
# lxml模块的html构建selector选择器(格式化响应response)
# from lxml import html
# import requests

# response = requests.get(url).content

# selector = html.formatstring(response)

# hrefs = selector.xpath('/html/body//div[@class='feed-item _j_feed_item']/a/@href')

# 以url = 'https://www.mafengwo.cn/gonglve/ziyouxing/2033.html'为例子

# python 2.7import requestsfrom lxml import htmlimport os
1 # 获取首页中子页的url链接2 def get_page_urls(url):3 response = requests.get(url).content4 # 通过lxml的html来构建选择器5 selector = html.fromstring(response)6 urls = []7 for i in selector.xpath("/html/body//div[@class='feed-item _j_feed_item']/a/@href"):8 urls.append(i)9 return urls
1 # get title from a child's html(div[@class='title'])2 def get_page_a_title(url):3 '''url is ziyouxing's a@href'''4 response = requests.get(url).content5 selector = html.fromstring(response)6 # get xpath by chrome's tool --> /html/body//div[@class='title']/text()7 a_title = selector.xpath("/html/body//div[@class='title']/text()")8 return a_title
 1 # 获取页面选择器(通过lxml的html构建) 2 def get_selector(url): 3 response = requests.get(url).content 4 selector = html.fromstring(response) 5 return selector
# 通过chrome的开发者工具分析html页面结构后发现,我们需要获取的文本内容主要显示在div[@class='l-topic']和div[@class='p-section']中
1 # 获取所需的文本内容2 def get_page_content(selector):3 # /html/body/div[2]/div[2]/div[1]/div[@class='l-topic']/p/text()4 page_title = selector.xpath("//div[@class='l-topic']/p/text()")5 # /html/body/div[2]/div[2]/div[1]/div[2]/div[15]/div[@class='p-section']/text()6 page_content = selector.xpath("//div[@class='p-section']/text()")7 return page_title,page_content
1 # 获取页面中的图片url地址2 def get_image_urls(selector):3 imagesrcs = selector.xpath("//img[@class='_j_lazyload']/@src")4 return imagesrcs
 # 获取图片的标题
1 def get_image_title(selector, num)2 # num 是从2开始的3 url = "/html/body/div[2]/div[2]/div[1]/div[2]/div["+num+"]/span[@class='img-an']/text()"4 if selector.xpath(url) is not None:5 image_title = selector.xpath(url)6 else:7 image_title = "map"+str(num) # 没有就起一个8 return image_title
 # 下载图片
 1 def downloadimages(selector,number): 2 '''number是用来计数的''' 3 urls = get_image_urls() 4 num = 2 5 amount = len(urls) 6 for url in urls: 7 image_title = get_image_title(selector, num) 8 filename = "/home/WorkSpace/tour/words/result"+number+"/+"image_title+".jpg" 9 if not os.path.exists(filename):10 os.makedirs(filename)11 print('downloading %s image %s' %(number, image_title))12 with open(filename, 'wb') as f:13 f.write(requests.get(url).content)14 num += 115 print "已经下载了%s张图" %num
# 入口,启动并把获取的数据存入文件中if __name__ =='__main__':
 url = ''urls = get_page_urls(url)# turn to get response from htmlnumber = 1for i in urls:
 selector = get_selector(i)# download images downloadimages(selector,number)# get text and write into a filepage_title, page_content = get_page_content(selector)
 result = page_title+'
'+page_content+'

'path = "/home/WorkSpace/tour/words/result"+num+"/"if not os.path.exists(filename):
 os.makedirs(filename)
 filename = path + "num"+".txt"with open(filename,'wb') as f:
 f.write(result)print result

到此就结束了该爬虫,爬取页面前一定要认真分析html结构,有些页面是由js生成,该页面比较简单,没涉及到js的处理,日后的随笔中会有相关分享

下载本文
显示全文
专题