视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
Python两种错误类型的介绍
2020-11-27 14:23:36 责编:小采
文档


到现在为止都没有过多介绍错误信息,但是已经在一些示例中使用过错误信息。Python至少有两种类型的错误:语法错误以及异常

8.1 Syntax Errors

语法错误,也称解析错误,是Python初学者经常抱怨的问题。

>>> while True print('Hello world')
 File "<stdin>", line 1while True print('Hello world') ^SyntaxError: invalid syntax

Python解析器重复打印错误行,并且展示一个小箭头,箭头指向错误行中错误最早被侦测到的位置。错误由箭头前面的语句导致(至少侦测到是这样的):以上示例中,错误在print()函数被侦测到,因为在它之前的冒号:缺失了。文件名和行号也被打印出来,当程序来自脚本时可以方便定位问题。

8.2 Exceptions

即使语句或者表达式在语法上是正确的,但是在执行的时候也可能会发生错误。在执行期间侦测到的问题叫做异常,异常不是绝对的致命错误:接下来会介绍如何在Python中处理异常。然而大多数异常都不会被程序处理,它们最终会成为错误信息,展示如下:

>>> 10 * (1/0)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>ZeroDivisionError: division by zero>>> 4 + spam*3Traceback (most recent call last):
 File "<stdin>", line 1, in <module>NameError: name 'spam' is not defined>>> '2' + 2Traceback (most recent call last):
 File "<stdin>", line 1, in <module>TypeError: Can't convert 'int' object to str implicitly

最后一行错误信息指出发生了什么。异常有不同类型,类型也作为错误信息的一部分打印出来:以上示例中的类型有除零异常ZeroDivisionError, 名字异常NameError 以及类型异常TypeError。作为异常类型打印的字符串是built-in异常的名字。对于所有built-in异常来说都是如此,尽管这个约定很有用,但是并不是所有用户自定义异常都会遵守。标准异常名字是built-in标识符(不是保留字)。

剩余行基于异常类型展示了详细的信息以及异常发生的原因。

前面部分错误信息以堆栈回溯的方式,展示异常发生的上下文信息。通常堆栈回溯中列出了源代码行;然而,当程序是从标准输入中读取时,不会展示行。

Built-in异常列举了所有built-in异常以及它们的意义。

8.3 Handling Exceptions

Python程序允许处理指定异常。以下程序要求用户循环输入,直到输入为有效整数停止,但是也可以中断程序(使用Control-C或者其他操作系统支持的手段);注意用户诱发的中断会抛出KeyboardInterrupt异常。

while True:try:
 x = int(input("Please enter a number: "))breakexcept ValueError:print("Oops! That was no valid number. Try again...")

try语句的执行顺序为:

  • 首先,执行在tryexcept之间的try子句

  • 如果没有异常发生,跳过except子句try语句执行完毕

  • 如果try子句执行期间有异常发生,该子句内剩余语句被跳过。接下来如果抛出的异常类型可以与关键字except后的异常匹配,那么except子句执行,接着继续执行try语句后的语句。

  • 如果异常发生但是没有匹配到except后的异常,那么异常抛到外层try语句;如果异常得不到处理,该异常成为未处理异常,导致程序终止并且像以上示例一样打印信息。

  • 一个try语句可以有多个except子句,为不同的异常指定处理方法。至多只有一个except子句会被执行。处理程序只会处理发生在对应try子句中的异常,而不会处理发生在同一try语句中其他处理程序中的异常。一个except子句可以使用带括号的元组列出多个异常,就像这样:

    ... except (RuntimeError, TypeError, NameError):
    ... pass

    except子句中的类可以匹配类型是其子类或者它自己类型的异常(但反过来不行,except子句中的子类不会匹配父类异常)。例如以下代码会依次打印B, C, D:

    class B(Exception):passclass C(B):passclass D(C):passfor cls in [B, C, D]:try:raise cls()except D:print("D")except C:print("C")except B:print("B")

    注意以上的except子句若反过来写(except B在前),那么将会打印B, B, B ——第一个except子句的匹配被触发。

    最后一个except子句可以省略异常名字作为通配符。因为这样做会隐藏其他的真实程序错误,所有要谨慎使用。也可以用来打印错误信息并且重新抛出(允许调用者处理异常):

    import systry:
     f = open('myfile.txt')
     s = f.readline()
     i = int(s.strip())except OSError as err:print("OS error: {0}".format(err))except ValueError:print("Could not convert data to an integer.")except:print("Unexpected error:", sys.exc_info()[0])raise

    try...except语句有一个可选的else子句,该子句只能出现在所有except子句之后。若要求try子句没有抛出异常时必须执行一段代码,使用else子句很有用(译注:else子句会被return, break, continue跳过)。例如:

    for arg in sys.argv[1:]:try:
     f = open(arg, 'r')except OSError:print('cannot open', arg)else:print(arg, 'has', len(f.readlines()), 'lines')
     f.close()

    使用 else 子句比在 try 子句中附加代码要好,因为这样可以避免 try ... except 意外的捕获的本不属于它们保护的那些代码抛出的异常。

    异常发生时,可以携带与之关联的值,也称作异常参数。异常参数是否可以存在以及其类型取决于异常类型。

    except子句可以在异常名字后指定变量。该变量绑定到异常实例,异常参数存储在instance.args属性中。方便起见,异常实例定义了__str__()以便异常参数可以直接打印,而不是使用.args引用。也可以首先实例化异常,并在抛出它之前加入任何想要的参数:

    >>> try:
    ... raise Exception('spam', 'eggs')
    ... except Exception as inst:
    ... print(type(inst)) # the exception instance... print(inst.args) # arguments stored in .args... print(inst) # __str__ allows args to be printed directly,... # but may be overridden in exception subclasses... x, y = inst.args # unpack args... print('x =', x)
    ... print('y =', y)
    ...<class 'Exception'>('spam', 'eggs')
    ('spam', 'eggs')
    x = spam
    y = eggs

    对于未处理异常来说,如果它有参数,那么参数将在错误信息的后面部分(详细信息部分)打印。

    异常处理程序不仅仅会处理即时发生在try子句中的异常,还会处理try子句中直接或者间接调用的函数中发生的异常。例如:

    >>> def this_fails():
    ... x = 1/0...>>> try:
    ... this_fails()
    ... except ZeroDivisionError as err:
    ... print('Handling run-time error:', err)
    ...
    Handling run-time error: division by zero

    8.4 Raising Exceptions

    raise语句允许程序员强制发生异常。例如:

    >>> raise NameError('HiThere')
    Traceback (most recent call last):
     File "<stdin>", line 1, in <module>NameError: HiThere

    raise的唯一参数指定要抛出的异常。参数必须是异常实例或者异常类(继承自Exception类的子类)。如果参数是异常类型,会隐式使用无参方式调用异常的构造器初始化一个异常实例:

    raise ValueError # shorthand for 'raise ValueError()'

    如果需要捕获异常但是不处理,一种更简单形式的raise语句允许重新抛出这个异常:

    >>> try:
    ... raise NameError('HiThere')
    ... except NameError:
    ... print('An exception flew by!')
    ... raise...
    An exception flew by!Traceback (most recent call last):
     File "<stdin>", line 2, in <module>NameError: HiThere

    8.5 User-defined Exception

    程序中可以通过创建新异常类的方式提出自己的异常(参见Classes获取Python类的更多信息)。异常必须直接或者间接继承自Exception类。

    自定义异常类拥有其他类的功能,但通常需要保持其简洁性,只提供几个供异常处理程序提取错误信息的属性。需要创建一个抛出若干不同错误的模块时,比较好的实践是,为定义在这个模块中的异常创建父类,由子类创建对应不同错误的具体异常:

    class Error(Exception):"""Base class for exceptions in this module."""passclass InputError(Error):"""Exception raised for errors in the input. Attributes: expression -- input expression in which the error occurred message -- explanation of the error """def __init__(self, expression, message):self.expression = expressionself.message = messageclass TransitionError(Error):"""Raised when an operation attempts a state transition that's not allowed. Attributes: previous -- state at beginning of transition next -- attempted new state message -- explanation of why the specific transition is not allowed """def __init__(self, previous, next, message):self.previous = previousself.next = nextself.message = message

    与标准异常类类似,大多数异常的名字都以"Error"结尾。

    许多标准模块都定义了自己的异常,这些异常对应模块中定义的函数中可能发生的错误。更多信息参考Classes。

    8.6 Defining Clean-up Actions

    try语句有可选的在任何情况下都会执行的子句,可用于定义清理动作。例如:

    >>> try:
    ... raise KeyboardInterrupt... finally:
    ... print('Goodbye, world!')
    ...
    Goodbye, world!KeyboardInterruptTraceback (most recent call last):
     File "<stdin>", line 2, in <module>

    无论是否有异常发生,finally子句在离开try语句之前总是会执行。当try子句中有异常发生并且没有被except子句处理(或者异常发生在except子句或else子句),finally子句执行之后,这些异常会重新抛出。当try语句的其他子句通过break, continue或者return语句离开时,finally子句也会执行。以下是较为复杂的示例:

    >>> def divide(x, y):
    ... try:
    ... result = x / y
    ... except ZeroDivisionError:
    ... print("division by zero!")
    ... else:
    ... print("result is", result)
    ... finally:
    ... print("executing finally clause")
    ...>>> divide(2, 1)
    result is 2.0executing finally clause>>> divide(2, 0)
    division by zero!executing finally clause>>> divide("2", "1")
    executing finally clause
    Traceback (most recent call last):
     File "<stdin>", line 1, in <module>
     File "<stdin>", line 3, in divideTypeError: unsupported operand type(s) for /: 'str' and 'str'

    正如所见的那样,finally子句在任何情况下都会执行。两个字符串相除产生的TypeError异常没有被except子句处理,因此在finally子句执行完毕之后被重新抛出。

    在实践应用中,finally子句用来释放外部资源(比如文件和网络连接),不论资源的使用是否成功。

    8.7 Predefined Clean-up Actions

    一些对象定义了标准的清理动作,当不再需要这些对象时,会执行清理动作,而不论使用对象的操作是否成功。以下示例读取文件并打印内容到显示器:

    for line in open("myfile.txt"):print(line, end="")

    这段代码的问题是:当代码执行完毕后,文件会保留打开状态一段不确定的时间。这在简单的脚本中不是什么大问题,但是在大型的应用程序中会出问题。with语句使得像文件一样的对象可以被立即准确回收。

    with open("myfile.txt") as f:for line in f:print(line, end="")

    语句执行后,即使在执行代码时遇到问题,文件f总是会被关闭。像文件一样提供预定义清理动作的对象会在其说明文档中指示这点。

    下载本文
    显示全文
    专题