视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
python做并行计算可以吗
2020-11-27 14:08:16 责编:小采
文档


python可以做并行计算,下面是相关介绍:

一、概览

Parallel Python是一个python模块,提供在SMP(具有多个处理器或多核的系统)和集群(通过网络连接的计算机)上并行执行python代码的机制。它轻巧,易于安装和与其他python软件集成。Parallel Python是一个用纯Python编写的开源和跨平台模块。二、特性

在SMP和集群上并行执行python代码

易于理解和实现基于Job的并行化技术(易于并行转换串行应用程序)

自动检测最佳配置(默认情况下工作进程数设置为有效处理器数)

动态处理器分配(工作进程数可以在运行时更改)

具有相同功能的后续作业的低开销(实现透明高速缓存以减少开销)

动态负载平衡(作业在运行时在处理器之间分布)

容错(如果其中一个节点发生故障,任务在其他节点上重新调度)

计算资源的自动发现

计算资源的动态分配(自动发现和容错的结果)

网络连接的基于SHA的认证

跨平台可移植性和互操作性(Windows,Linux,Unix,Mac OS X)

跨架构可移植性和互操作性(x86,x86-等)

开源

下载本文
显示全文
专题