视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
如何高效地获取文件行数
2020-11-27 14:09:41 责编:小采
文档
 简单的做法:

需要在python中获取大文件(数十万行)的行数。

def file_len(fname):
 with open(fname) as f:
 for i, l in enumerate(f):
 pass return i + 1

有效的方法(缓冲区读取策略):

首先看下运行的结果:

mapcount : 0.471799945831
simplecount : 0.634400033951
bufcount : 0.468800067902
opcount : 0.602999973297

因此,对于Windows/Python2.6来说,缓冲区读取策略似乎是最快的。

以下是代码:

from __future__ import with_statement
import time
import mmap
import random
from collections import defaultdict
def mapcount(filename):
 f = open(filename, "r+")
 buf = mmap.mmap(f.fileno(), 0)
 lines = 0
 readline = buf.readline
 while readline():
 lines += 1
 return lines
def simplecount(filename):
 lines = 0
 for line in open(filename):
 lines += 1
 return lines
def bufcount(filename):
 f = open(filename) 
 lines = 0
 buf_size = 1024 * 1024
 read_f = f.read # loop optimization
 buf = read_f(buf_size)
 while buf:
 lines += buf.count('
')
 buf = read_f(buf_size)
 return lines
def opcount(fname):
 with open(fname) as f:
 for i, l in enumerate(f):
 pass
 return i + 1
counts = defaultdict(list)
for i in range(5):
 for func in [mapcount, simplecount, bufcount, opcount]:
 start_time = time.time()
 assert func("big_file.txt") == 1209138
 counts[func].append(time.time() - start_time)
for key, vals in counts.items():
 print key.__name__, ":", sum(vals) / float(len(vals))

下载本文
显示全文
专题