视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
django开发之mongodb的配置与使用
2020-11-27 14:20:34 责编:小采
文档

本篇文章给大家带来的内容是关于django开发之mongodb的配置与使用,有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助。

今天整理了一下在django项目中如何使用mongodb, 环境如下:ubuntu18.04, django2.0.5, drf3.9, mongoengine0.16

第一步:在settings.py中配置mongodb和mysql,配置如下(可以同时使用mysql和mongodb):

DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.mysql', # 数据库引擎
 'NAME': 'django_test2', # 你要存储数据的库名,事先要创建之
 'USER': 'root', # 数据库用户名
 'PASSWORD': 'wyzane', # 密码
 'HOST': 'localhost', # 主机
 'PORT': '3306', # 数据库使用的端口
 },
 'mongotest': {
 'ENGINE': None,
 }
}
import mongoengine
# 连接mongodb中数据库名称为mongotest5的数据库
conn = mongoengine.connect("mongotest")

第二步:向mongodb中插入数据

1、插入json类型数据

models.py:
 import mongoengine
 class StudentModel(mongoengine.Document):
 name = mongoengine.StringField(max_length=32)
 age = mongoengine.IntField()
 password = mongoengine.StringField(max_length=32)

views.py:
 from rest_framework.views import APIView
 class FirstMongoView(APIView):
 def post(self, request):
 name = request.data["name"]
 age = request.data["age"]
 password = request.data["password"]
 StudentModel.objects.create(name=name, age=age, password=password)
 return Response(dict(msg="OK", code=10000))

插入数据格式为:

{
 "name": "nihao",
 "age": 18,
 "password": "123456"
}

2、插入含有list的json数据

models.py:
 import mongoengine
 class Student2Model(mongoengine.Document):
 name = mongoengine.StringField(max_length=32)
 # 用于存储list类型的数据
 score = mongoengine.ListField()

views.py:
 from rest_framework.views import APIView
 class FirstMongo2View(APIView):
 def post(self, request):
 name = request.data["name"]
 score = request.data["score"]
 Student2Model.objects.create(name=name, score=score)
 return Response(dict(msg="OK", code=10000))

插入数据格式为:

{
 "name": "test",
 "score": [12, 13]
}

3、插入含有dict和list的复杂json数据

models.py:
 import mongoengine
 class Student3Model(mongoengine.Document):
 name = mongoengine.StringField(max_length=32)
 # DictField用于存储字典类型的数据
 score = mongoengine.DictField()
views.py:
 from rest_framework.views import APIView
 class FirstMongo3View(APIView):
 def post(self, request):
 name = request.data["name"]
 score = request.data["score"]
 Student3Model.objects.create(name=name, score=score)
 return Response(dict(msg="OK", code=10000))

插入数据格式为:

{
 "name": "test",
 "score": {"xiaoming": 12, "xiaoli": 13}
}
或者:
{
 "name": "test",
 "score": {"xiaoming": 12, "xiaoli": {"xiaozhao": 14}}
}
或者:
{
"name": "test",
"score": {"xiaoming": 12, "xiaoli": {"xiaozhao": {"xiaoliu": 12, "xiaojian": 18}}}
}
或者:
{
"name": "test",
"score": {"xiaoming": 12, "xiaoli": {"xiaozhao": {"xiaoliu": 12, "xiaojian": [12,13,14]}}}
}

第三步:查询mongodb中的数据

1、查询并序列化复杂json数据

serializers.py:
 class StudentSerializer(serializers.Serializer):
 name = serializers.CharField()
 score = serializers.DictField() # 序列化复杂的json数据
 # DictField与EmbeddedDocumentField类似,但是比EmbeddedDocumentField更灵活
views.py:
 class FirstMongo4View(APIView):
 def get(self, request):
 student_info = Student3Model.objects.all()
 # 增加过滤条件
 # student_info = Student3Model.objects.filter(name="test1")
 ser = StudentSerializer(instance=student_info, many=True)
 return Response(dict(msg="OK", code="10000", data=ser.data))

2.序列化mongodb中含有嵌套关系的两个document

models.py:
 class AuthorModel(mongoengine.EmbeddedDocument):
 author_name = mongoengine.StringField(max_length=32)
 age = mongoengine.IntField()


 class BookModel(mongoengine.Document):
 book_name = mongoengine.StringField(max_length=)
 publish = mongoengine.DateTimeField(default=datetime.datetime.utcnow())
 words = mongoengine.IntField()
 author = mongoengine.EmbeddedDocumentField(AuthorModel)

serializers.py: 序列化时注意与rest_framework的序列化中DictField()的区别
 from rest_framework_mongoengine import serializers as s1
 class AuthorSerializer(s1.DocumentSerializer): 
 # DocumentSerializer继承自drf中的ModelSerializer,用于代替ModelSerializer序列化mongodb中的document.
 # 具体可以到官网上查看
 class Meta:
 model = AuthorModel
 fields = ('author_name', 'age')


 class BookSerializer(s1.DocumentSerializer):
 author = AuthorSerializer()

 class Meta:
 model = BookModel
 fields = ('book_name', 'publish', 'words', 'author')

 AuthorSerializer还可以这样写:
 class AuthorSerializer(s1.EmbeddedDocumentSerializer):
 # EmbeddedDocumentSerializer继承了DocumentSerializer
 class Meta:
 model = AuthorModel
 fields = ('author_name', 'age')

views.py:
 class BookView(APIView):
 def get(self, request):
 """
 查询数据
 :param request:
 :return:
 """
 books = BookModel.objects.all()
 ser = BookSerializer(instance=books, many=True)
 return Response(dict(msg="OK", code="10000", data=ser.data))

序列化mongodb中相关联的两个表时,如果序列化器继承自rest_framework中的Serializer和ModelSerializer,会抛出如下异常:

Django serialization to JSON error: 'MetaDict' object has no attribute 'concrete_model'

此时,序列化器需要继承自rest_framework_mongoengine的类,具体可以查看官网:
http://umutbozkurt.github.io/...

下载本文
显示全文
专题