视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
Python各种图像库的图像读写方式的简单介绍(附代码)
2020-11-27 14:20:25 责编:小采
文档


本篇文章给大家带来的内容是关于Python各种图像库的图像读写方式的简单介绍(附代码),有一定的参考价值,有需要的朋友可以参考一下,希望对你有所帮助。

目前主流的图像库有几下几种:

1. OpenCV 2. PIL(Pillow) 3. matplotlib.image 4. skimage 5. scipy.misc

结论:以上图片库中当属OpenCV最为强大,成熟。

1.1 OpenCV 图像的读取与储存

import cv2
#读取图像 直接是numpy矩阵格式
img = cv2.imread('horse.jpg',1) # 0表示读入灰色图片,1表示读入彩色图片
cv2.imshow('image',img) # 显示图像
print(img.shape) # (height,width,channel)
print(img.size) # 像素数量
print(img.dtype) # 数据类型
print(img) # 打印图像的numpy数组,3纬数组

#储存图像
# 当前目录储存
cv2.write(‘horse1.jpg',img)
# 自定义储存
cv2.write(‘/path_name/’ + str(image_name) + '.jpg',img)
 
cv2.waitKey()

1.2OpenCV 图像灰化处理

import cv2
#方法一
img = cv2.imread('horse.jpg',0) # 0表示读入灰色图片,或者使用cv2.IMREAD_GRATSCALE 替代0
cv2.imshow('gray image',img)

#方法二
img = cv2.imread('horse.jpg')
gray_img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
cv2.imshow('gray image',gray_img)

print(gray_img.shape) # (height, width)
print(gray_img.size) # 像素数量
print(gray_img) # 打印图像的numpy数组,2维
cv2.waitKey()

1.3 OpenCV 矩阵格式变换

Why?:OpenCV的矩阵格式 (height, width, channels) -->> 深度学习矩阵类型可能是 (channels,height,width)

import cv2
import numpy as np
img = cv2.imread('horse.jpg',1)
cv2.imshow('image',img)
# 矩阵格式的变换
print(img.shape)
img = img.transpose(2,0,1) #变换函数 
print(img.shape)
# 矩阵扩展 (batch_size, channels, height, width) 预测单张图片的操作
# 加一列作为图片的个数
img = np.expand_dims(img, axis=0) #使用numpy函数
print(img.shape)
# 训练阶段构建batchdata_lst = []
loop:
 img = cv2.imread('xxx.jpg')
 data_lst.append(img)
data_arr = np.array(data_lst)

1.4 OpenCV 图片归一化 (Data Normalization)

import cv2
# 为了减少计算量,需要把像素值0-255转换到0-1之间
img = cv2.imread('horse.jpg')
img = img.astype('float') / 255.0 # 先转化数据类型为float
print(img.dtype)
print(img)

1.5 OpenCV BRG转换为RGB

import cv2
img = cv2.imread('horse.jpg')
img = cv2.cvtColor(img,cv2.COLOR_BGR2RGB) # 转为RGB format
print(img)

1.6 OpenCV 访问像素点

import cv2
img = cv2.imread('horse.jpg')
gray_img = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY) # 转为Gray image
print(img[4,4]) # 3 channels
print(gray_img[4,4]) # 1 channel

1.7 OpenCV 感兴趣区域剪切(ROI)

import cv2
img = cv2.imread('horse.jpg')
print(img.shape)
roi = img[0:437,0:400] # [y:height,x:width]

cv2.imshow('roi',roi)
cv2.waitKey()

2.1 PIL 图像读取与储存

from PIL import Image
import numpy as np
#图像读取
img = Image.open('horse.jpg')
print(img.format) # 图片格式
print(img.size) # (width,height)
print(img.mode) # 图片通道类型

#将图像转化为矩阵格式
arr = np.array(img)
print(arr.shape)
print(arr.dtype)

#图像储存
new_img = Image.fromarray(arr)
new_img.save('test.jpg')

img.show()

2.2 PIL 图像灰化处理

#图像灰化处理
gray = Image.open('horse.jpg').convert('L')
gray_arr = np.array(gray)
print(gray_arr.shape) # (height,width)
print(gray_arr.dtype)
print(gray_arr)
gray.show()

2.3 PIL 感兴趣区域剪切

# 感兴趣区域剪切
img = Image.open('horse.jpg')
roi = img.crop((0,0,200,200)) # (左上x,左上y,右下x,右下y)
roi.show()

2.4 通道操作

# 通道处理
r,g,b = img.split() #分离
img = Image.merge("RGB",(b,g,r)) #合并
img = img.copy() #复制

3.1 Matplotlib 读取和存储图片

import matplotlib.pyplot as plt
import numpy as np
# 图像读取为numpy数组格式
img = plt.imread('horse.jpg')

plt.axis('off') # 关闭刻度显示

print(img.shape) # (height, width, channel)
print(img.size) # 像素数量
print(img.dtype)

#储存图片
plt.savefig('./name.jpg')

figure = plt.figure(figsize=(20,10)) # 调整显示图片的大小

plt.imshow(img)
plt.show()

3.2 Matplotlib 图片灰化处理

#图片灰化处理
# 平均值发
img_mean = img.mean(axis=2)
plt.imshow(img_mean,cmap='gray')
plt.show()

#最大值法
img_max = img.max(axis=-1)
plt.imshow(img_max,cmap='gray')
plt.show()

#RGB三原色法
gravity = np.array([0.299,0.587,0.114])
img_gravity = np.dot(img,gravity)
plt.imshow(img_gravity,cmap="gray")
plt.show()

4.1 skimage 读取和储存图像

from skimage import io
#读取图像numpy数组格式
img = io.imread('horse.jpg')
print(img.shape)
print(img.dtype)
print(img.size)
#print(img)
io.imshow(img)

#储存图像
io.imsave('test.jpg',img)

4.2 skimage 灰化处理

#图像灰化处理并归一化
img = io.imread('horse.jpg',as_gray=True)
print(img.shape)
print(img.dtype) # 数据类型位float
print(img.size)
print(img)
io.imshow(img)
io.show()

5.1 scipy.misc 读取和储存图像

#在1.2.0 之后统一用imageio模块
import imageio
import matplotlib.pyplot as plt
#读取图片为numpy数组
img = imageio.imread('horse.jpg')
print(img.dtype)
print(img.size) # 像素数量
print(img.shape) #(height, width, channels)
plt.imshow(img)
plt.show()
print(img)
#储存图片
imageio.imsave('test.jpg',img)

下载本文
显示全文
专题