视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
Python算法应用实战之栈
2020-11-27 14:12:05 责编:小采
文档
 栈是什么,你可以理解为一种先入后出的数据结构(First In Last Out),一种操作受限的线性表。下面这篇文章主要给大家介绍了Python中栈的应用实战,文中给出了多个实例,需要的朋友可以参考借鉴,下面来一起看看吧。

栈(stack)

栈又称之为堆栈是一个特殊的有序表,其插入和删除操作都在栈顶进行操作,并且按照先进后出,后进先出的规则进行运作。

如下图所示

例如的弹匣,第一颗放进弹匣的子弹反而在发射出去的时候是最后一个,而最后放入弹匣的一颗子弹在打出去的时候是第一颗发射出去的。

栈的接口

如果你创建了一个栈,那么那么应该具有以下接口来进行对栈的操作

接口描述
push()入栈
pop()出栈
isEmpty()判断是否为空栈
length()获取栈的长度
getTop()取栈顶的元素,元素不出栈

知道栈需要上述的接口后,那么在Python中,列表就类似是一个栈,提供接口如下:

操作描述
s = []创建一个栈
s.append(x)往栈内添加一个元素
s.pop()在栈内删除一个元素
not s判断是否为空栈
len(s)获取栈内元素的数量
s[-1]获取栈顶的元素

Python中的栈接口使用实例:

# 创建一个栈
In [1]: s = []
# 往栈内添加一个元素
In [2]: s.append(1)
In [3]: s
Out[3]: [1]
# 删除栈内的一个元素
In [4]: s.pop()
Out[4]: 1
In [5]: s
Out[5]: []
# 判断栈是否为空
In [6]: not s
Out[6]: True
In [7]: s.append(1)
In [8]: not s
Out[8]: False
# 获取栈内元素的数量
In [9]: len(s)
Out[9]: 1
In [10]: s.append(2)
In [11]: s.append(3)
# 取栈顶的元素
In [12]: s[-1]
Out[12]: 3

一大波实例

在了解栈的基本概念之后,让我们再来看几个实例,以便于理解栈。

括号匹配

题目

假如表达式中允许包含三中括号()、[]、{},其嵌套顺序是任意的,例如:

正确的格式

{()[()]},[{({})}]

错误的格式

[(]),[()),(()}

编写一个函数,判断一个表达式字符串,括号匹配是否正确

思路

  1. 创建一个空栈,用来存储尚未找到的左括号;

  2. 便利字符串,遇到左括号则压栈,遇到右括号则出栈一个左括号进行匹配;

  3. 在第二步骤过程中,如果空栈情况下遇到右括号,说明缺少左括号,不匹配;

  4. 在第二步骤遍历结束时,栈不为空,说明缺少右括号,不匹配;

解决代码

建议在pycharm中打断点,以便于更好的理解

#!/use/bin/env python
# _*_ coding:utf-8 _*_
LEFT = {'(', '[', '{'} # 左括号
RIGHT = {')', ']', '}'} # 右括号
def match(expr):
 """
 :param expr: 传过来的字符串
 :return: 返回是否是正确的
 """
 stack = [] # 创建一个栈
 for brackets in expr: # 迭代传过来的所有字符串
 if brackets in LEFT: # 如果当前字符在左括号内
 stack.append(brackets) # 把当前左括号入栈
 elif brackets in RIGHT: # 如果是右括号
 if not stack or not 1 <= ord(brackets) - ord(stack[-1]) <= 2:
 # 如果当前栈为空,()]
 # 如果右括号减去左括号的值不是小于等于2大于等于1
 return False # 返回False
 stack.pop() # 删除左括号
 return not stack # 如果栈内没有值则返回True,否则返回False
result = match('[(){()}]')
print(result)

迷宫问题

题目

用一个二维数组表示一个简单的迷宫,用0表示通路,用1表示阻断,老鼠在每个点上可以移动相邻的东南西北四个点,设计一个算法,模拟老鼠走迷宫,找到从入口到出口的一条路径。

如图所示

出去的正确线路如图中的红线所示

思路

  1. 用一个栈来记录老鼠从入口到出口的路径

  2. 走到某点后,将该点左边压栈,并把该点值置为1,表示走过了;

  3. 从临近的四个点中可到达的点中任意选取一个,走到该点;

  4. 如果在到达某点后临近的4个点都不走,说明已经走入死胡同,此时退栈,退回一步尝试其他点;

  5. 反复执行第二、三、四步骤直到找到出口;

解决代码

#!/use/bin/env python
# _*_ coding:utf-8 _*_
def initMaze():
 """
 :return: 初始化迷宫
 """
 maze = [[0] * 7 for _ in range(5 + 2)] # 用列表解析创建一个7*7的二维数组,为了确保迷宫四周都是墙
 walls = [ # 记录了墙的位置
 (1, 3),
 (2, 1), (2, 5),
 (3, 3), (3, 4),
 (4, 2), # (4, 3), # 如果把(4, 3)点也设置为墙,那么整个迷宫是走不出去的,所以会返回一个空列表
 (5, 4)
 ]
 for i in range(7): # 把迷宫的四周设置成墙
 maze[i][0] = maze[i][-1] = 1
 maze[0][i] = maze[-1][i] = 1
 for i, j in walls: # 把所有墙的点设置为1
 maze[i][j] = 1
 return maze
"""
[1, 1, 1, 1, 1, 1, 1]
[1, 0, 0, 1, 0, 0, 1]
[1, 1, 0, 0, 0, 1, 1]
[1, 0, 0, 1, 1, 0, 1]
[1, 0, 1, 0, 0, 0, 1]
[1, 0, 0, 0, 1, 0, 1]
[1, 1, 1, 1, 1, 1, 1]
"""
def path(maze, start, end):
 """
 :param maze: 迷宫
 :param start: 起始点
 :param end: 结束点
 :return: 行走的每个点
 """
 i, j = start # 分解起始点的坐标
 ei, ej = end # 分解结束点的左边
 stack = [(i, j)] # 创建一个栈,并让老鼠站到起始点的位置
 maze[i][j] = 1 # 走过的路置为1
 while stack: # 栈不为空的时候继续走,否则退出
 i, j = stack[-1] # 获取当前老鼠所站的位置点
 if (i, j) == (ei, ej): break # 如果老鼠找到了出口
 for di, dj in [(0, -1), (0, 1), (-1, 0), (1, 0)]: # 左右上下
 if maze[i + di][j + dj] == 0: # 如果当前点可走
 maze[i + di][j + dj] = 1 # 把当前点置为1
 stack.append((i + di, j + dj)) # 把当前的位置添加到栈里面
 break
 else: # 如果所有的点都不可走
 stack.pop() # 退回上一步
 return stack # 如果迷宫不能走则返回空栈
Maze = initMaze() # 初始化迷宫
result = path(maze=Maze, start=(1, 1), end=(5, 5)) # 老鼠开始走迷宫
print(result)
# [(1, 1), (1, 2), (2, 2), (3, 2), (3, 1), (4, 1), (5, 1), (5, 2), (5, 3), (4, 3), (4, 4), (4, 5), (5, 5)]

后缀表达式求值

题目

计算一个表达式时,编译器通常使用后缀表达式,这种表达式不需要括号:

中缀表达式后缀表达式
2 + 3 * 42 3 4 * +
( 1 + 2 ) * ( 6 / 3 ) + 21 2 + 6 3 / * 2 +
18 / ( 3 * ( 1 + 2 ) )18 3 1 2 + * /

编写程序实现后缀表达式求值函数。

思路

  1. 建立一个栈来存储待计算的操作数;

  2. 遍历字符串,遇到操作数则压入栈中,遇到操作符号则出栈操作数(n次),进行相应的计算,计算结果是新的操作数压回栈中,等待计算

  3. 按上述过程,遍历完整个表达式,栈中只剩下最终结果;

解决代码

#!/use/bin/env python
# _*_ coding:utf-8 _*_
operators = { # 运算符操作表
 '+': lambda op1, op2: op1 + op2,
 '-': lambda op1, op2: op1 - op2,
 '*': lambda op1, op2: op1 * op2,
 '/': lambda op1, op2: op1 / op2,
}
def evalPostfix(e):
 """
 :param e: 后缀表达式
 :return: 正常情况下栈内的第一个元素就是计算好之后的值
 """
 tokens = e.split() # 把传过来的后缀表达式切分成列表
 stack = []
 for token in tokens: # 迭代列表中的元素
 if token.isdigit(): # 如果当前元素是数字
 stack.append(int(token)) # 就追加到栈里边
 elif token in operators.keys(): # 如果当前元素是操作符
 f = operators[token] # 获取运算符操作表中对应的lambda表达式
 op2 = stack.pop() # 根据先进后出的原则,先让第二个元素出栈
 op1 = stack.pop() # 在让第一个元素出栈
 stack.append(f(op1, op2)) # 把计算的结果在放入到栈内
 return stack.pop() # 返回栈内的第一个元素
result = evalPostfix('2 3 4 * +')
print(result)
# 14

背包问题

题目

有一个背包能装10kg的物品,现在有6件物品分别为:

物品名称重量
物品01kg
物品18kg
物品24kg
物品33kg
物品45kg
物品52kg

编写找出所有能将背包装满的解,如物品1+物品5。

解决代码

#!/use/bin/env python
# _*_ coding:utf-8 _*_
def knapsack(t, w):
 """
 :param t: 背包总容量
 :param w: 物品重量列表
 :return:
 """
 n = len(w) # 可选的物品数量
 stack = [] # 创建一个栈
 k = 0 # 当前所选择的物品游标
 while stack or k < n: # 栈不为空或者k<n
 while t > 0 and k < n: # 还有剩余空间并且有物品可装
 if t >= w[k]: # 剩余空间大于等于当前物品重量
 stack.append(k) # 把物品装备背包
 t -= w[k] # 背包空间减少
 k += 1 # 继续向后找
 if t == 0: # 找到了解
 print(stack)
 # 回退过程
 k = stack.pop() # 把最后一个物品拿出来
 t += w[k] # 背包总容量加上w[k]
 k += 1 # 装入下一个物品
knapsack(10, [1, 8, 4, 3, 5, 2])
"""
[0, 2, 3, 5]
[0, 2, 4]
[1, 5]
[3, 4, 5]
"""

下载本文
显示全文
专题