视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
python如何实现线性回归
2020-11-27 14:11:13 责编:小采
文档
 Python语言实现线性回归的步骤有:导入所要用到的库,读取数据并进行预处理。分析数据以及建立线性回归模型,并进行模型训练检验模型效果

通过使用python语言来实现线性回归是非常方便的,因为它提供了多个现成的库,比如可以使用numpy.linalog.lstsq,pandas.ols以及

scipy.stats.linregress等,在本文中将使用sklearn库的linear_model.LinearRegression,它支持任意维度,非常好用。

【推荐教程:Python教程】

二维直线

例:线性方程y=a?x+b;y=a?x+b 表示平面一直线

在下面的例子中,我们将建立线性回归模型,通过给出房屋的面积来预测房屋的价格

import pandas as pd
from io import StringIO
from sklearn import linear_model
import matplotlib.pyplot as plt
# 房屋面积与价格历史数据(csv文件)
csv_data = 'square_feet,price
150,50
200,7450
250,8450
300,9450
350,11450
400,15450
600,18450
'
# 读入dataframe
df = pd.read_csv(StringIO(csv_data))
print(df)
# 建立线性回归模型
regr = linear_model.LinearRegression()
# 拟合
regr.fit(df['square_feet'].reshape(-1, 1), df['price']) # 注意此处.reshape(-1, 1),因为X是一维的!
# 不难得到直线的斜率、截距
a, b = regr.coef_, regr.intercept_
# 给出待预测面积
area = 238.5
# 方式1:根据直线方程计算的价格
print(a * area + b)
# 方式2:根据predict方法预测的价格
print(regr.predict(area))
# 画图
# 1.真实的点
plt.scatter(df['square_feet'], df['price'], color='blue')
# 2.拟合的直线
plt.plot(df['square_feet'], regr.predict(df['square_feet'].reshape(-1,1)), color='red', linewidth=4)
plt.show()

效果图:

三维平面

线性方程z=a?x+b?y+c;z=a?x+b?y+c 表示空间一平面

import numpy as np
from sklearn import linear_model
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
xx, yy = np.meshgrid(np.linspace(0,10,10), np.linspace(0,100,10))
zz = 1.0 * xx + 3.5 * yy + np.random.randint(0,100,(10,10))

# 构建成特征、值的形式
X, Z = np.column_stack((xx.flatten(),yy.flatten())), zz.flatten()

# 建立线性回归模型
regr = linear_model.LinearRegression()
# 拟合
regr.fit(X, Z)
# 不难得到平面的系数、截距
a, b = regr.coef_, regr.intercept_
# 给出待预测的一个特征
x = np.array([[5.8, 78.3]])
# 方式1:根据线性方程计算待预测的特征x对应的值z(注意:np.sum)
print(np.sum(a * x) + b)
# 方式2:根据predict方法预测的值z
print(regr.predict(x))
# 画图
fig = plt.figure()
ax = fig.gca(projection='3d')
# 1.画出真实的点
ax.scatter(xx, yy, zz)
# 2.画出拟合的平面
ax.plot_wireframe(xx, yy, regr.predict(X).reshape(10,10))
ax.plot_surface(xx, yy, regr.predict(X).reshape(10,10), alpha=0.3)
plt.show()

效果图:

总结:

下载本文
显示全文
专题