视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
关于Python中Inf与Nan的判断问题详解
2020-11-27 14:26:47 责编:小采
文档


这篇文章主要介绍了关于Python中Inf与Nan的判断问题,文中介绍的很详细,对大家具有一定的参考价值,有需要的朋友们下面来一起看看吧。

大家都知道 在Python 中可以用如下方式表示正负无穷:

float("inf") # 正无穷
float("-inf") # 负无穷

利用 inf(infinite) 乘以 0 会得到 not-a-number(NaN) 。如果一个数超出 infinite,那就是一个 NaN(not a number)数。在 NaN 数中,它的 exponent 部分为可表达的最大值,即 FF(单精度)、7FF(双精度)和 7FFF(扩展双精度)。 NaN 数与 infinite 数的区别是:infinite 数的 significand 部分为 0 值(扩展双精度的 bit63 位为 1);而 NaN 数的 significand 部分不为 0 值。

我们先看看如下的代码:

>>> inf = float("inf")
>>> ninf = float("-inf")
>>> nan = float("nan")
>>> inf is inf
True
>>> ninf is ninf
True
>>> nan is nan
True
>>> inf == inf
True
>>> ninf == ninf
True
>>> nan == nan
False
>>> inf is float("inf")
False
>>> ninf is float("-inf")
False
>>> nan is float("nan")
False
>>> inf == float("inf")
True
>>> ninf == float("-inf")
True
>>> nan == float("nan")
False

如果你没有尝试过在 Python 中判断一个浮点数是否为 NaN,对以上的输出结果肯定会感到诧异。首先,对于正负无穷和 NaN 自身与自身用 is 操作,结果都是 True,这里好像没有什么问题;但是如果用 == 操作,结果却不一样了, NaN 这时变成了 False。如果分别用 float 重新定义一个变量来与它们再用 is 和 == 比较,结果仍然出人意料。出现这种情况的原因稍稍有些复杂,这里就不赘术了,感兴趣可以查阅相关资料。

如果你希望正确的判断 Inf 和 Nan 值,那么你应该使用 math 模块的 math.isinf math.isnan 函数:

>>> import math
>>> math.isinf(inf)
True
>>> math.isinf(ninf)
True
>>> math.isnan(nan)
True
>>> math.isinf(float("inf"))
True
>>> math.isinf(float("-inf"))
True
>>> math.isnan(float("nan"))
True

这样便准确无误了。既然我在谈论这个问题,就是再忠告:不要在 Python 中试图用 is 和 == 来判断一个对象是否是正负无穷或者 NaN。你就乖乖的用 math 模块吧,否则就是引火烧身。

当然也有别的方法来作判断,以下用 NaN 来举例,但仍然推荐用 math 模块,免得把自己弄糊涂。

用对象自身判断自己

>>> def isnan(num):
... return num != num
... 
>>> isnan(float("nan"))
True

用 numpy 模块的函数

>>> import numpy as np
>>> 
>>> np.isnan(np.nan)
True
>>> np.isnan(float("nan"))
True
>>> np.isnan(float("inf"))
False

Numpy 的 isnan 函数还可以对整个 list 进行判断:

>>> lst = [1, float("nan"), 2, 3, np.nan, float("-inf"), 4, np.nan]
>>> lst
[1, nan, 2, 3, nan, -inf, 4, nan]
>>> np.isnan(lst)
array([False, True, False, False, True, False, False, True], dtype=bool)

这里的 np.isnan 返回布尔值数组,如果对应位置为 NaN,返回 True,否则返回 False。

更多关于Python中Inf与Nan的判断问题详解相关文章请关注PHP中文网!

下载本文
显示全文
专题