视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
python中scipy.misc.logsumexp函数的运用
2020-11-27 14:26:16 责编:小OO
文档

下面小编就为大家带来一篇浅谈python中scipy.misc.logsumexp函数的运用场景。小编觉得挺不错的,现在就分享给大家,也给大家做个参考。一起跟随小编过来看看吧

scipy.misc.logsumexp函数的输入参数有(a, axis=None, b=None, keepdims=False, return_sign=False),具体配置可参见这里,返回的值是np.log(np.sum(np.exp(a)))。

这里需要强调的是使用该函数的场景:

一般来说,该函数主要用于非常小的数值的运算(比如蒙特卡洛取样样本)。在这种情况下,将数据保持log处理是必须的。所以这时你如果想将数组中的数据累加求和就需要这样计算log(sum(exp(a))),但这样做就会产生一些精确性的问题,而这个
问题scipy.misc.logsumexp是引进解决了的,所以进行小数据求和可以直接使用scipy.misc.logsumexp函数。

参考:https://github.com/numpy/numpy/issues/5652

下载本文
显示全文
专题