视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
tensorflow1.0学习之模型的保存与恢复(Saver)_python
2020-11-27 14:21:58 责编:小采
文档


这篇文章主要介绍了tensorflow1.0学习之模型的保存与恢复(Saver) ,现在分享给大家,也给大家做个参考。一起过来看看吧

将训练好的模型参数保存起来,以便以后进行验证或测试,这是我们经常要做的事情。tf里面提供模型保存的是tf.train.Saver()模块。

模型保存,先要创建一个Saver对象:如

saver=tf.train.Saver()

在创建这个Saver对象的时候,有一个参数我们经常会用到,就是 max_to_keep 参数,这个是用来设置保存模型的个数,默认为5,即 max_to_keep=5,保存最近的5个模型。如果你想每训练一代(epoch)就想保存一次模型,则可以将 max_to_keep设置为None或者0,如:

saver=tf.train.Saver(max_to_keep=0)

但是这样做除了多占用硬盘,并没有实际多大的用处,因此不推荐。

当然,如果你只想保存最后一代的模型,则只需要将max_to_keep设置为1即可,即

saver=tf.train.Saver(max_to_keep=1)

创建完saver对象后,就可以保存训练好的模型了,如:

saver.save(sess,'ckpt/mnist.ckpt',global_step=step)

第一个参数sess,这个就不用说了。第二个参数设定保存的路径和名字,第三个参数将训练的次数作为后缀加入到模型名字中。

saver.save(sess, 'my-model', global_step=0) ==> filename: 'my-model-0'
...
saver.save(sess, 'my-model', global_step=1000) ==> filename: 'my-model-1000'

看一个mnist实例:

# -*- coding: utf-8 -*-
"""
Created on Sun Jun 4 10:29:48 2017

@author: Administrator
"""
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=False)

x = tf.placeholder(tf.float32, [None, 784])
y_=tf.placeholder(tf.int32,[None,])

dense1 = tf.layers.dense(inputs=x, 
 units=1024, 
 activation=tf.nn.relu,
 kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),
 kernel_regularizer=tf.nn.l2_loss)
dense2= tf.layers.dense(inputs=dense1, 
 units=512, 
 activation=tf.nn.relu,
 kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),
 kernel_regularizer=tf.nn.l2_loss)
logits= tf.layers.dense(inputs=dense2, 
 units=10, 
 activation=None,
 kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),
 kernel_regularizer=tf.nn.l2_loss)

loss=tf.losses.sparse_softmax_cross_entropy(labels=y_,logits=logits)
train_op=tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)
correct_prediction = tf.equal(tf.cast(tf.argmax(logits,1),tf.int32), y_) 
acc= tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

sess=tf.InteractiveSession() 
sess.run(tf.global_variables_initializer())

saver=tf.train.Saver(max_to_keep=1)
for i in range(100):
 batch_xs, batch_ys = mnist.train.next_batch(100)
 sess.run(train_op, feed_dict={x: batch_xs, y_: batch_ys})
 val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})
 print('epoch:%d, val_loss:%f, val_acc:%f'%(i,val_loss,val_acc))
 saver.save(sess,'ckpt/mnist.ckpt',global_step=i+1)
sess.close()

代码中红色部分就是保存模型的代码,虽然我在每训练完一代的时候,都进行了保存,但后一次保存的模型会覆盖前一次的,最终只会保存最后一次。因此我们可以节省时间,将保存代码放到循环之外(仅适用max_to_keep=1,否则还是需要放在循环内).

在实验中,最后一代可能并不是验证精度最高的一代,因此我们并不想默认保存最后一代,而是想保存验证精度最高的一代,则加个中间变量和判断语句就可以了。

saver=tf.train.Saver(max_to_keep=1)
max_acc=0
for i in range(100):
 batch_xs, batch_ys = mnist.train.next_batch(100)
 sess.run(train_op, feed_dict={x: batch_xs, y_: batch_ys})
 val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})
 print('epoch:%d, val_loss:%f, val_acc:%f'%(i,val_loss,val_acc))
 if val_acc>max_acc:
 max_acc=val_acc
 saver.save(sess,'ckpt/mnist.ckpt',global_step=i+1)
sess.close()

如果我们想保存验证精度最高的三代,且把每次的验证精度也随之保存下来,则我们可以生成一个txt文件用于保存。

saver=tf.train.Saver(max_to_keep=3)
max_acc=0
f=open('ckpt/acc.txt','w')
for i in range(100):
 batch_xs, batch_ys = mnist.train.next_batch(100)
 sess.run(train_op, feed_dict={x: batch_xs, y_: batch_ys})
 val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})
 print('epoch:%d, val_loss:%f, val_acc:%f'%(i,val_loss,val_acc))
 f.write(str(i+1)+', val_acc: '+str(val_acc)+'
')
 if val_acc>max_acc:
 max_acc=val_acc
 saver.save(sess,'ckpt/mnist.ckpt',global_step=i+1)
f.close()
sess.close()

模型的恢复用的是restore()函数,它需要两个参数restore(sess, save_path),save_path指的是保存的模型路径。我们可以使用tf.train.latest_checkpoint()来自动获取最后一次保存的模型。如:

model_file=tf.train.latest_checkpoint('ckpt/')
saver.restore(sess,model_file)

则程序后半段代码我们可以改为:

sess=tf.InteractiveSession() 
sess.run(tf.global_variables_initializer())
is_train=False
saver=tf.train.Saver(max_to_keep=3)

#训练阶段
if is_train:
 max_acc=0
 f=open('ckpt/acc.txt','w')
 for i in range(100):
 batch_xs, batch_ys = mnist.train.next_batch(100)
 sess.run(train_op, feed_dict={x: batch_xs, y_: batch_ys})
 val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})
 print('epoch:%d, val_loss:%f, val_acc:%f'%(i,val_loss,val_acc))
 f.write(str(i+1)+', val_acc: '+str(val_acc)+'
')
 if val_acc>max_acc:
 max_acc=val_acc
 saver.save(sess,'ckpt/mnist.ckpt',global_step=i+1)
 f.close()

#验证阶段
else:
 model_file=tf.train.latest_checkpoint('ckpt/')
 saver.restore(sess,model_file)
 val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})
 print('val_loss:%f, val_acc:%f'%(val_loss,val_acc))
sess.close()

标红的地方,就是与保存、恢复模型相关的代码。用一个bool型变量is_train来控制训练和验证两个阶段。

整个源程序:

# -*- coding: utf-8 -*-
"""
Created on Sun Jun 4 10:29:48 2017

@author: Administrator
"""
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=False)

x = tf.placeholder(tf.float32, [None, 784])
y_=tf.placeholder(tf.int32,[None,])

dense1 = tf.layers.dense(inputs=x, 
 units=1024, 
 activation=tf.nn.relu,
 kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),
 kernel_regularizer=tf.nn.l2_loss)
dense2= tf.layers.dense(inputs=dense1, 
 units=512, 
 activation=tf.nn.relu,
 kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),
 kernel_regularizer=tf.nn.l2_loss)
logits= tf.layers.dense(inputs=dense2, 
 units=10, 
 activation=None,
 kernel_initializer=tf.truncated_normal_initializer(stddev=0.01),
 kernel_regularizer=tf.nn.l2_loss)

loss=tf.losses.sparse_softmax_cross_entropy(labels=y_,logits=logits)
train_op=tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)
correct_prediction = tf.equal(tf.cast(tf.argmax(logits,1),tf.int32), y_) 
acc= tf.reduce_mean(tf.cast(correct_prediction, tf.float32))

sess=tf.InteractiveSession() 
sess.run(tf.global_variables_initializer())

is_train=True
saver=tf.train.Saver(max_to_keep=3)

#训练阶段
if is_train:
 max_acc=0
 f=open('ckpt/acc.txt','w')
 for i in range(100):
 batch_xs, batch_ys = mnist.train.next_batch(100)
 sess.run(train_op, feed_dict={x: batch_xs, y_: batch_ys})
 val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})
 print('epoch:%d, val_loss:%f, val_acc:%f'%(i,val_loss,val_acc))
 f.write(str(i+1)+', val_acc: '+str(val_acc)+'
')
 if val_acc>max_acc:
 max_acc=val_acc
 saver.save(sess,'ckpt/mnist.ckpt',global_step=i+1)
 f.close()

#验证阶段
else:
 model_file=tf.train.latest_checkpoint('ckpt/')
 saver.restore(sess,model_file)
 val_loss,val_acc=sess.run([loss,acc], feed_dict={x: mnist.test.images, y_: mnist.test.labels})
 print('val_loss:%f, val_acc:%f'%(val_loss,val_acc))
sess.close()

下载本文
显示全文
专题