视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
python查找第k小元素代码分享
2020-11-27 14:29:52 责编:小采
文档


代码如下:


# -*- coding: utf-8 -*-

from random import randint
from math import ceil, floor

def _partition(A, l, r, i):
"""以A[i]为主元划分数组A[l..r],使得:
A[l..m-1] <= A[m] < A[m+1..r]
"""
A[i], A[r] = A[r], A[i] # i交换到末位r,作为主元
pivot = A[r] # 主元
m = l # 索引标记
for n in xrange(l, r): # l..r-1
if A[n] <= pivot:
A[m], A[n] = A[n], A[m] # 交换
m += 1 # 后移
A[m], A[r] = A[r], A[m] # 主元到m位
return m

def _rand(A, l, r):
"""随机划分主元"""
return randint(l, r) # A[l..r]随机取一个

def _select(A, l, r, k, pivot_selector = _rand):
"""利用快排,得A[l..r]中第k小的数,k in [l+1,r+1]:

其尾递归方式,伪码如下:
SELECT(A, l, r, k)
1 while true:
2 i ← ? // 划分主元位置
3 m ← PARTITION(A, l, r, i) // 数组划分
4 n ← m - l + 1 // A[l..m]元素个数
5 if k = n // 检查A[m]是否是第k小的元素
6 then return A[m]
7 elseif k < n // 左划分区
8 r = m - 1
9 else // 右划分区
10 k = k - n
11 l = m + 1

Args:
pivot_selector(Function): 主元选取方法,默认随机方式
"""
if not A:
return None
if l == r:
return A[l]
while True:
i = pivot_selector(A, l, r)
m = _partition(A, l, r, i)
n = m - l + 1
if k == n:
return A[m]
elif k < n:
r = m - 1
else:
k = k - n
l = m + 1

def rand_select(A, k):
"""默认随机划分主元方式,k in [1, len(A)]
E[T(n)] = O(n)
"""
return _select(A, 0, len(A) - 1, k);


def _median(A, l, r):
"""对A[l..r]插入排序(原地)后选取其中位数位置"""
for j in xrange(l, r + 1):
k = A[j]
i = j
while i > l and A[i-1] > k:
A[i] = A[i-1]
i -= 1
A[i] = k
return l + int((r - l) * 0.5) # 下中位数

def _medianOfMedians(A, l, r):
"""中位数的中位数方式:
1. 划分为floor(n/5)个5元组,剩下(n%5)组成最后一组。
2. 找出ceil(n/5)个组各自的中位数。先对每组插入排序,再从中选出中位数。
3. 对第2步中找出的ceil(n/5)个中位数重复上述操作,直到仅有一个中位数。
"""
if l == r:
return l
n = r - l + 1 # 元素个数
m = int(ceil(n / 5.0)) # 划分组数,每组5个元素
for i in xrange(m):
# 每组起始位和结束位
sub_l = l + i * 5
sub_r = sub_l + 4
if sub_r > r:
sub_r = r
# 对每组元素插入排序后,选取中位数
sub_m = _median(A, sub_l, sub_r) # 中位数索引
# 交换中位数到前几位
j = l + i
A[j], A[sub_m] = A[sub_m], A[j]
return _medianOfMedians(A, l, l + m - 1) # 中位数的中位数

def bfprt_select(A, k):
"""中位数的中位数方式(BFPRT算法)
T(n) = O(n)
"""
return _select(A, 0, len(A) - 1, k, _medianOfMedians);


def _median3(A, l, r):
"""三数中位数方式,取l,r,(l+r)/2三数中位数"""
c = (l + r) / 2
keys = [l, c, r]
i = _median(keys, 0, 2)
return keys[i]

def median_select(A, k):
"""三数中位数方式,以消除最坏情况"""
return _select(A, 0, len(A) - 1, k, _median3);


if __name__ == '__main__':
import random, time
from copy import copy

print('preparing data...')
n = 1000000
nums = range(n)
random.shuffle(nums)
print('ready go!')

def timeit(fnc, *args, **kargs):
print('%s starts processing' % fnc.__name__)
begtime = time.clock()
retval = fnc(*args, **kargs)
endtime = time.clock()
print('%s takes time : %f' % (fnc.__name__, endtime - begtime))
return retval

test_methods = [rand_select, bfprt_select, median_select]
k = random.randrange(n) + 1
dashes = '---' * 10
for test in test_methods:
print(dashes)
nums_new = copy(nums)
result = timeit(test, nums_new, k)
print('the %dth smallest element: %d' % (k, result))

下载本文
显示全文
专题