视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
Python中装饰器的一个妙用
2020-11-27 14:40:19 责编:小采
文档


好吧,我知道是大半夜……,但我还是觉得赶紧花上半个小时,把这最新的想法分享出来是值得的~直接进入正题~

我们来模拟一个场景,需要你去抓去一个页面,然后这个页面有好多url也要分别去抓取,而进入这些子url后,还有数据要抓取。简单点,我们就按照三层来看,那我们的代码就是如下:

代码如下:


def func_top(url):
data_dict= {}

#在页面上获取到子url
sub_urls = xxxx

data_list = []
for it in sub_urls:
data_list.append(func_sub(it))

data_dict[\'data\'] = data_list

return data_dict

def func_sub(url):
data_dict= {}

#在页面上获取到子url
bottom_urls = xxxx

data_list = []
for it in bottom_urls:
data_list.append(func_bottom(it))

data_dict[\'data\'] = data_list

return data_dict

def func_bottom(url):
#获取数据
data = xxxx
return data

func_top是上层页面的处理函数,func_sub是子页面的处理函数,func_bottom是最深层页面的处理函数,func_top会在取到子页面url后遍历调用func_sub,func_sub也是同样。

如果正常情况下,这样确实已经满足需求了,但是偏偏这个你要抓取的网站可能极不稳定,经常链接不上,导致数据拿不到。

于是这个时候你有两个选择:

1.遇到错误就停止,之后重新从断掉的位置开始重新跑
2.遇到错误继续,但是要在之后重新跑一遍,这个时候已经有的数据不希望再去网站拉一次,而只去拉没有取到的数据

对第一种方案基本无法实现,因为如果别人网站的url调整顺序,那么你记录的位置就无效了。那么只有第二种方案,说白了,就是要把已经拿到的数据cache下来,等需要的时候,直接从cache里面取。

OK,目标已经有了,怎么实现呢?

如果是在C++中的,这是个很麻烦的事情,而且写出来的代码必定丑陋无比,然而庆幸的是,我们用的是python,而python对函数有装饰器。

所以实现方案也就有了:

定义一个装饰器,如果之前取到数据,就直接取cache的数据;如果之前没有取到,那么就从网站拉取,并且存入cache中.

代码如下:

代码如下:


def get_dump_data(dir_name, url):
m = hashlib.md5(url)
filename = m.hexdigest()
full_file_name = \'dumps/%s/%s\' % (dir_name,filename)

if os.path.isfile(full_file_name):
return eval(file(full_file_name,\'r\').read())
else:
return None


def set_dump_data(dir_name, url, data):
if not os.path.isdir(\'dumps/\'+dir_name):
os.makedirs(\'dumps/\'+dir_name)

m = hashlib.md5(url)
filename = m.hexdigest()
full_file_name = \'dumps/%s/%s\' % (dir_name,filename)

f = file(full_file_name, \'w+\')
f.write(repr(data))
f.close()


def deco_dump_data(func):
def func_wrapper(url):
data = get_dump_data(func.__name__,url)
if data is not None:
return data

data = func(url)
if data is not None:
set_dump_data(func.__name__,url,data)
return data

return func_wrapper


然后,我们只需要在每个func_top,func_sub,func_bottom都加上deco_dump_data这个装饰器即可~~

搞定!这样做最大的好处在于,因为top,sub,bottom,每一层都会dump数据,所以比如某个sub层数据dump之后,是根本不会走到他所对应的bottom层的,减少了大量的开销!

OK,就这样~ 人生苦短,我用python!

下载本文
显示全文
专题