一个非常高效的提取内容关键词的python代码,这段代码只能用于英文文章内容,中文因为要分词,这段代码就为力了,不过要加上分词功能,效果和英文是一样的。
代码如下:
# coding=UTF-8
import nltk
from nltk.corpus import brown
# This is a fast and simple noun phrase extractor (based on NLTK)
# Feel free to use it, just keep a link back to this post
# http://thetokenizer.com/2013/05/09/efficient-way-to-extract-the-main-topics-of-a-sentence/
# Create by Shlomi Babluki
# May, 2013
 
# This is our fast Part of Speech tagger
#############################################################################
brown_train = brown.tagged_sents(categories='news')
regexp_tagger = nltk.RegexpTagger(
 [(r'^-?[0-9]+(.[0-9]+)?$', 'CD'),
 (r'(-|:|;)$', ':'),
 (r'\'*$', 'MD'),
 (r'(The|the|A|a|An|an)$', 'AT'),
 (r'.*able$', 'JJ'),
 (r'^[A-Z].*$', 'NNP'),
 (r'.*ness$', 'NN'),
 (r'.*ly$', 'RB'),
 (r'.*s$', 'NNS'),
 (r'.*ing$', 'VBG'),
 (r'.*ed$', 'VBD'),
 (r'.*', 'NN')
])
unigram_tagger = nltk.UnigramTagger(brown_train, backoff=regexp_tagger)
bigram_tagger = nltk.BigramTagger(brown_train, backoff=unigram_tagger)
#############################################################################
# This is our semi-CFG; Extend it according to your own needs
#############################################################################
cfg = {}
cfg["NNP+NNP"] = "NNP"
cfg["NN+NN"] = "NNI"
cfg["NNI+NN"] = "NNI"
cfg["JJ+JJ"] = "JJ"
cfg["JJ+NN"] = "NNI"
#############################################################################
class NPExtractor(object):
 def __init__(self, sentence):
 self.sentence = sentence
 # Split the sentence into singlw words/tokens
 def tokenize_sentence(self, sentence):
 tokens = nltk.word_tokenize(sentence)
 return tokens
 # Normalize brown corpus' tags ("NN", "NN-PL", "NNS" > "NN")
 def normalize_tags(self, tagged):
 n_tagged = []
 for t in tagged:
 if t[1] == "NP-TL" or t[1] == "NP":
 n_tagged.append((t[0], "NNP"))
 continue
 if t[1].endswith("-TL"):
 n_tagged.append((t[0], t[1][:-3]))
 continue
 if t[1].endswith("S"):
 n_tagged.append((t[0], t[1][:-1]))
 continue
 n_tagged.append((t[0], t[1]))
 return n_tagged
 # Extract the main topics from the sentence
 def extract(self):
 tokens = self.tokenize_sentence(self.sentence)
 tags = self.normalize_tags(bigram_tagger.tag(tokens))
 merge = True
 while merge:
 merge = False
 for x in range(0, len(tags) - 1):
 t1 = tags[x]
 t2 = tags[x + 1]
 key = "%s+%s" % (t1[1], t2[1])
 value = cfg.get(key, '')
 if value:
 merge = True
 tags.pop(x)
 tags.pop(x)
 match = "%s %s" % (t1[0], t2[0])
 pos = value
 tags.insert(x, (match, pos))
 break
 matches = []
 for t in tags:
 if t[1] == "NNP" or t[1] == "NNI":
 #if t[1] == "NNP" or t[1] == "NNI" or t[1] == "NN":
 matches.append(t[0])
 return matches
# Main method, just run "python np_extractor.py"
def main():
 sentence = "Swayy is a beautiful new dashboard for discovering and curating online content."
 np_extractor = NPExtractor(sentence)
 result = np_extractor.extract()
 print "This sentence is about: %s" % ", ".join(result)
if __name__ == '__main__':
 main()
希望本文所述对大家的Python程序设计有所帮助。
下载本文