视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
用Python中的字典来处理索引统计的方法
2020-11-27 14:41:48 责编:小采
文档


最近折腾索引引擎以及数据统计方面的工作比较多, 与 Python 字典频繁打交道, 至此整理一份此方面 API 的用法与坑法备案.

索引引擎的基本工作原理便是倒排索引, 即将一个文档所包含的文字反过来映射至文档; 这方面算法并没有太多花样可言, 为了增加效率, 索引数据尽可往内存里面搬, 此法可效王献之习书法之势, 只要把十八台机器内存全部塞满, 那么基本也就功成名就了. 而基本思路举个简单例子, 现在有以下文档 (分词已经完成) 以及其包含的关键词

 doc_a: [word_w, word_x, word_y]
 doc_b: [word_x, word_z]
 doc_c: [word_y]

将其变换为

 word_w -> [doc_a]
 word_x -> [doc_a, doc_b]
 word_y -> [doc_a, doc_c]
 word_z -> [doc_b]

写成 Python 代码, 便是

doc_a = {'id': 'a', 'words': ['word_w', 'word_x', 'word_y']} 
doc_b = {'id': 'b', 'words': ['word_x', 'word_z']} 
doc_c = {'id': 'c', 'words': ['word_y']} 
 
docs = [doc_a, doc_b, doc_c] 
indices = dict() 
 
for doc in docs: 
 for word in doc['words']: 
 if word not in indices: 
 indices[word] = [] 
 indices[word].append(doc['id']) 
 
print indices

不过这里有个小技巧, 就是对于判断当前词是否已经在索引字典里的分支

if word not in indices: 
 indices[word] = []

可以被 dict 的 setdefault(key, default=None) 接口替换. 此接口的作用是, 如果 key 在字典里, 那么好说, 拿出对应的值来; 否则, 新建此 key , 且设置默认对应值为 default . 但从设计上来说, 我不明白为何 default 有个默认值 None , 看起来并无多大意义, 如果确要使用此接口, 大体都会自带默认值吧, 如下

for doc in docs: 
 for word in doc['words']: 
 indices. setdefault(word, []) .append(doc['id'])

这样就省掉分支了, 代码看起来少很多.
不过在某些情况下, setdefault 用起来并不顺手: 当 default 值构造很复杂时, 或产生 default 值有副作用时, 以及一个之后会说到的情况; 前两种情况一言以蔽之, 就是 setdefault 不适用于 default 需要惰性求值的场景. 换言之, 为了兼顾这种需求, setdefault 可能会设计成

def setdefault(self, key, default_factory): 
 if key not in self: 
 self[key] = default_factory() 
 return self[key]

倘若真如此, 那么上面的代码应改成

for doc in docs: 
 for word in doc['words']: 
 indices.setdefault(word, list ).append(doc['id'])

不过实际上有其它替代方案, 这个最后会提到.

如果说上面只是一个能预见但实际上可能根本不会遇到的 API 缺陷, 那么下面这个就略打脸了.
考虑现在要进行词频统计, 即一个词在文章中出现了多少次, 如果直接拿 dict 来写, 大致是

def word_count(words): 
 count = dict() 
 for word in words: 
 count.setdefault(word, 0) += 1
 return count 
 
print word_count(['hiiragi', 'kagami', 'hiiragi', 'tukasa', 'yosimizu', 'kagami'])

当你兴致勃勃地跑起上面代码时, 代码会以迅雷不及掩脸之势把异常甩到你鼻尖上 --- 因为出现在 += 操作符左边的 count.setdefault(word, 0) 在 Python 中不是一个左值. 怎样, 现在开始念叨 C艹 类型体系的好了吧.

因为 Python 把默认的字面常量 {} 等价于 dict() 就认为 dict 是银弹的思想是要不得的; Python 里面各种数据结构不少, 解决统计问题, 理想的方案是 collections.defaultdict 这个类. 下面的代码想必看一眼就明白

from collections import defaultdict 
 
doc_a = {'id': 'a', 'words': ['word_w', 'word_x', 'word_y']} 
doc_b = {'id': 'b', 'words': ['word_x', 'word_z']} 
doc_c = {'id': 'c', 'words': ['word_y']} 
 
docs = [doc_a, doc_b, doc_c] 
indices = defaultdict(list) 
 
for doc in docs: 
 for word in doc['words']: 
 indices[word].append(doc['id']) 
 
print indices 
 
def word_count(words): 
 count = defaultdict(int) 
 for word in words: 
 count[word] += 1
 return count 
 
print word_count(['hiiragi', 'kagami', 'hiiragi', 'tukasa', 'yosimizu', 'kagami'])

完满解决了之前遇到的那些破事.

此外 collections 里还有个 Counter , 可以粗略认为它是 defaultdict(int) 的扩展.

下载本文
显示全文
专题