视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
Python使用matplotlib绘制动画的方法
2020-11-27 14:41:19 责编:小采
文档


本文实例讲述了Python使用matplotlib绘制动画的方法。分享给大家供大家参考。具体分析如下:

matplotlib从1.1.0版本以后就开始支持绘制动画

下面是几个的示例:

第一个例子使用generator,每隔两秒,就运行函数data_gen:

# -*- coding: utf-8 -*- 
import numpy as np 
import matplotlib.pyplot as plt 
import matplotlib.animation as animation 
fig = plt.figure() 
axes1 = fig.add_subplot(111) 
line, = axes1.plot(np.random.rand(10)) 
#因为update的参数是调用函数data_gen,
#所以第一个默认参数不能是framenum 
def update(data): 
 line.set_ydata(data) 
 return line, 
# 每次生成10个随机数据 
def data_gen(): 
 while True: 
 yield np.random.rand(10) 
ani = animation.FuncAnimation(fig, update, data_gen, interval=2*1000)
plt.show()

第二个例子使用list(metric),每次从metric中取一行数据作为参数送入update中:

import numpy as np 
import matplotlib.pyplot as plt 
import matplotlib.animation as animation 
start = [1, 0.18, 0.63, 0.29, 0.03, 0.24, 0.86, 0.07, 0.58, 0] 
metric =[[0.03, 0.86, 0.65, 0.34, 0.34, 0.02, 0.22, 0.74, 0.66, 0.65], 
 [0.43, 0.18, 0.63, 0.29, 0.03, 0.24, 0.86, 0.07, 0.58, 0.55], 
 [0.66, 0.75, 0.01, 0.94, 0.72, 0.77, 0.20, 0.66, 0.81, 0.52] 
 ] 
fig = plt.figure() 
window = fig.add_subplot(111) 
line, = window.plot(start) 
#如果是参数是list,则默认每次取list中的一个元素,
#即metric[0],metric[1],...
def update(data): 
 line.set_ydata(data) 
 return line, 
ani = animation.FuncAnimation(fig, update, metric, interval=2*1000) 
plt.show() 

第三个例子:

import numpy as np 
from matplotlib import pyplot as plt 
from matplotlib import animation 
# First set up the figure, the axis, and the plot element we want to animate 
fig = plt.figure() 
ax = plt.axes(xlim=(0, 2), ylim=(-2, 2)) 
line, = ax.plot([], [], lw=2) 
# initialization function: plot the background of each frame 
def init(): 
 line.set_data([], []) 
 return line, 
# animation function. This is called sequentially 
# note: i is framenumber 
def animate(i): 
 x = np.linspace(0, 2, 1000) 
 y = np.sin(2 * np.pi * (x - 0.01 * i)) 
 line.set_data(x, y) 
 return line, 
# call the animator. blit=True means only re-draw the parts that have changed. 
anim = animation.FuncAnimation(fig, animate, init_func=init, 
 frames=200, interval=20, blit=True) 
#anim.save('basic_animation.mp4', fps=30, extra_args=['-vcodec', 'libx2']) 
plt.show() 

第四个例子:

# -*- coding: utf-8 -*- 
import numpy as np 
import matplotlib.pyplot as plt 
import matplotlib.animation as animation 
# 每次产生一个新的坐标点 
def data_gen(): 
 t = data_gen.t 
 cnt = 0 
 while cnt < 1000: 
 cnt+=1 
 t += 0.05 
 yield t, np.sin(2*np.pi*t) * np.exp(-t/10.) 
data_gen.t = 0 
# 绘图 
fig, ax = plt.subplots() 
line, = ax.plot([], [], lw=2) 
ax.set_ylim(-1.1, 1.1) 
ax.set_xlim(0, 5) 
ax.grid() 
xdata, ydata = [], [] 
# 因为run的参数是调用函数data_gen,
# 所以第一个参数可以不是framenum:设置line的数据,返回line 
def run(data): 
 # update the data 
 t,y = data 
 xdata.append(t) 
 ydata.append(y) 
 xmin, xmax = ax.get_xlim() 
 if t >= xmax: 
 ax.set_xlim(xmin, 2*xmax) 
 ax.figure.canvas.draw() 
 line.set_data(xdata, ydata) 
 return line, 
# 每隔10秒调用函数run,run的参数为函数data_gen, 
# 表示图形只更新需要绘制的元素 
ani = animation.FuncAnimation(fig, run, data_gen, blit=True, interval=10, 
 repeat=False) 
plt.show() 

再看下面的例子:

# -*- coding: utf-8 -*- 
import numpy as np 
import matplotlib.pyplot as plt 
import matplotlib.animation as animation 
#第一个参数必须为framenum 
def update_line(num, data, line): 
 line.set_data(data[...,:num]) 
 return line, 
fig1 = plt.figure() 
data = np.random.rand(2, 15) 
l, = plt.plot([], [], 'r-') 
plt.xlim(0, 1) 
plt.ylim(0, 1) 
plt.xlabel('x') 
plt.title('test') 
#framenum从1增加大25后,返回再次从1增加到25,再返回... 
line_ani = animation.FuncAnimation(fig1, update_line, 25,fargs=(data, l),interval=50, blit=True) 
#等同于 
#line_ani = animation.FuncAnimation(fig1, update_line, frames=25,fargs=(data, l), 
# interval=50, blit=True) 
#忽略frames参数,framenum会从1一直增加下去知道无穷 
#由于frame达到25以后,数据不再改变,所以你会发现到达25以后图形不再变化了 
#line_ani = animation.FuncAnimation(fig1, update_line, fargs=(data, l),
# interval=50, blit=True) 
plt.show() 

希望本文所述对大家的python程序设计有所帮助。

下载本文
显示全文
专题