视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
Python中的数据对象持久化存储模块pickle的使用示例
2020-11-27 14:35:37 责编:小采
文档


Python中可以使用 pickle 模块将对象转化为文件保存在磁盘上,在需要的时候再读取并还原。具体用法如下:
pickle是Python库中常用的序列化工具,可以将内存对象以文本或二进制格式导出为字符串,或者写入文档。后续可以从字符或文档中还原为内存对象。新版本的Python中用c重新实现了一遍,叫cPickle,性能更高。 下面的代码演示了pickle库的常用接口用法,非常简单:

import cPickle as pickle

# dumps and loads
# 将内存对象dump为字符串,或者将字符串load为内存对象
def test_dumps_and_loads():
 t = {'name': ['v1', 'v2']}
 print t

 o = pickle.dumps(t)
 print o
 print 'len o: ', len(o)

 p = pickle.loads(o)
 print p

 

# 关于HIGHEST_PROTOCOL参数,pickle 支持3种protocol,0、1、2:
# http://stackoverflow.com/questions/235824/python-pickle-protocol-choice
# 0:ASCII protocol,兼容旧版本的Python
# 1:binary format,兼容旧版本的Python
# 2:binary format,Python2.3 之后才有,更好的支持new-sytle class
def test_dumps_and_loads_HIGHEST_PROTOCOL():
 print 'HIGHEST_PROTOCOL: ', pickle.HIGHEST_PROTOCOL

 t = {'name': ['v1', 'v2']}
 print t

 o = pickle.dumps(t, pickle.HIGHEST_PROTOCOL)
 print 'len o: ', len(o)

 p = pickle.loads(o)
 print p


# new-style class
def test_new_sytle_class():
 class TT(object):
 def __init__(self, arg, **kwargs):
 super(TT, self).__init__()
 self.arg = arg
 self.kwargs = kwargs

 def test(self):
 print self.arg
 print self.kwargs

 # ASCII protocol
 t = TT('test', a=1, b=2)
 o1 = pickle.dumps(t)
 print o1
 print 'o1 len: ', len(o1)
 p = pickle.loads(o1)
 p.test()

 # HIGHEST_PROTOCOL对new-style class支持更好,性能更高
 o2 = pickle.dumps(t, pickle.HIGHEST_PROTOCOL)
 print 'o2 len: ', len(o2)
 p = pickle.loads(o2)
 p.test()


# dump and load
# 将内存对象序列化后直接dump到文件或支持文件接口的对象中
# 对于dump,需要支持write接口,接受一个字符串作为输入参数,比如:StringIO
# 对于load,需要支持read接口,接受int输入参数,同时支持readline接口,无输入参数,比如StringIO

# 使用文件,ASCII编码
def test_dump_and_load_with_file():
 t = {'name': ['v1', 'v2']}

 # ASCII format
 with open('test.txt', 'w') as fp:
 pickle.dump(t, fp)

 with open('test.txt', 'r') as fp:
 p = pickle.load(fp)
 print p


# 使用文件,二进制编码
def test_dump_and_load_with_file_HIGHEST_PROTOCOL():
 t = {'name': ['v1', 'v2']}
 with open('test.bin', 'wb') as fp:
 pickle.dump(t, fp, pickle.HIGHEST_PROTOCOL)

 with open('test.bin', 'rb') as fp:
 p = pickle.load(fp)
 print p


# 使用StringIO,二进制编码
def test_dump_and_load_with_StringIO():
 import StringIO

 t = {'name': ['v1', 'v2']}

 fp = StringIO.StringIO()
 pickle.dump(t, fp, pickle.HIGHEST_PROTOCOL)

 fp.seek(0)
 p = pickle.load(fp)
 print p

 fp.close()


# 使用自定义类
# 这里演示用户自定义类,只要实现了write、read、readline接口,
# 就可以用作dump、load的file参数
def test_dump_and_load_with_user_def_class():
 import StringIO

 class FF(object):
 def __init__(self):
 self.buf = StringIO.StringIO()

 def write(self, s):
 self.buf.write(s)
 print 'len: ', len(s)

 def read(self, n):
 return self.buf.read(n)

 def readline(self):
 return self.buf.readline()

 def seek(self, pos, mod=0):
 return self.buf.seek(pos, mod)

 def close(self):
 self.buf.close()

 fp = FF()
 t = {'name': ['v1', 'v2']}
 pickle.dump(t, fp, pickle.HIGHEST_PROTOCOL)

 fp.seek(0)
 p = pickle.load(fp)
 print p

 fp.close()


# Pickler/Unpickler
# Pickler(file, protocol).dump(obj) 等价于 pickle.dump(obj, file[, protocol])
# Unpickler(file).load() 等价于 pickle.load(file)
# Pickler/Unpickler 封装性更好,可以很方便的替换file
def test_pickler_unpickler():
 t = {'name': ['v1', 'v2']}

 f = file('test.bin', 'wb')
 pick = pickle.Pickler(f, pickle.HIGHEST_PROTOCOL)
 pick.dump(t)
 f.close()

 f = file('test.bin', 'rb')
 unpick = pickle.Unpickler(f)
 p = unpick.load()
 print p
 f.close()


pickle.dump(obj, file[, protocol])
这是将对象持久化的方法,参数的含义分别为:

  • obj: 要持久化保存的对象;
  • file: 一个拥有 write() 方法的对象,并且这个 write() 方法能接收一个字符串作为参数。这个对象可以是一个以写模式打开的文件对象或者一个 StringIO 对象,或者其他自定义的满足条件的对象。
  • protocol: 这是一个可选的参数,默认为 0 ,如果设置为 1 或 True,则以高压缩的二进制格式保存持久化后的对象,否则以ASCII格式保存。
  • 对象被持久化后怎么还原呢?pickle 模块也提供了相应的方法,如下:

    pickle.load(file)
    只有一个参数 file ,对应于上面 dump 方法中的 file 参数。这个 file 必须是一个拥有一个能接收一个整数为参数的 read() 方法以及一个不接收任何参数的 readline() 方法,并且这两个方法的返回值都应该是字符串。这可以是一个打开为读的文件对象、StringIO 对象或其他任何满足条件的对象。

    下面是一个基本的用例:

    # -*- coding: utf-8 -*-
    
    import pickle
    # 也可以这样:
    # import cPickle as pickle
    
    obj = {"a": 1, "b": 2, "c": 3}
    
    # 将 obj 持久化保存到文件 tmp.txt 中
    pickle.dump(obj, open("tmp.txt", "w"))
    
    # do something else ...
    
    # 从 tmp.txt 中读取并恢复 obj 对象
    obj2 = pickle.load(open("tmp.txt", "r"))
    
    print obj2
    
    # -*- coding: utf-8 -*-
     
    import pickle
    # 也可以这样:
    # import cPickle as pickle
     
    obj = {"a": 1, "b": 2, "c": 3}
     
    # 将 obj 持久化保存到文件 tmp.txt 中
    pickle.dump(obj, open("tmp.txt", "w"))
     
    # do something else ...
     
    # 从 tmp.txt 中读取并恢复 obj 对象
    obj2 = pickle.load(open("tmp.txt", "r"))
     
    print obj2
    
    


    不过实际应用中,我们可能还会有一些改进,比如用 cPickle 来代替 pickle ,前者是后者的一个 C 语言实现版本,拥有更快的速度,另外,有时在 dump 时也会将第三个参数设为 True 以提高压缩比。再来看下面的例子:

    # -*- coding: utf-8 -*-
    
    import cPickle as pickle
    import random
    import os
    
    import time
    
    LENGTH = 1024 * 10240
    
    def main():
     d = {}
     a = []
     for i in range(LENGTH):
     a.append(random.randint(0, 255))
    
     d["a"] = a
    
     print "dumping..."
    
     t1 = time.time()
     pickle.dump(d, open("tmp1.dat", "wb"), True)
     print "dump1: %.3fs" % (time.time() - t1)
    
     t1 = time.time()
     pickle.dump(d, open("tmp2.dat", "w"))
     print "dump2: %.3fs" % (time.time() - t1)
    
     s1 = os.stat("tmp1.dat").st_size
     s2 = os.stat("tmp2.dat").st_size
    
     print "%d, %d, %.2f%%" % (s1, s2, 100.0 * s1 / s2)
    
     print "loading..."
    
     t1 = time.time()
     obj1 = pickle.load(open("tmp1.dat", "rb"))
     print "load1: %.3fs" % (time.time() - t1)
    
     t1 = time.time()
     obj2 = pickle.load(open("tmp2.dat", "r"))
     print "load2: %.3fs" % (time.time() - t1)
    
    
    if __name__ == "__main__":
     main()
    
    # -*- coding: utf-8 -*-
     
    import cPickle as pickle
    import random
    import os
     
    import time
     
    LENGTH = 1024 * 10240
     
    def main():
     d = {}
     a = []
     for i in range(LENGTH):
     a.append(random.randint(0, 255))
     
     d["a"] = a
     
     print "dumping..."
     
     t1 = time.time()
     pickle.dump(d, open("tmp1.dat", "wb"), True)
     print "dump1: %.3fs" % (time.time() - t1)
     
     t1 = time.time()
     pickle.dump(d, open("tmp2.dat", "w"))
     print "dump2: %.3fs" % (time.time() - t1)
     
     s1 = os.stat("tmp1.dat").st_size
     s2 = os.stat("tmp2.dat").st_size
     
     print "%d, %d, %.2f%%" % (s1, s2, 100.0 * s1 / s2)
     
     print "loading..."
     
     t1 = time.time()
     obj1 = pickle.load(open("tmp1.dat", "rb"))
     print "load1: %.3fs" % (time.time() - t1)
     
     t1 = time.time()
     obj2 = pickle.load(open("tmp2.dat", "r"))
     print "load2: %.3fs" % (time.time() - t1)
     
     
    if __name__ == "__main__":
     main()
    
    


    在我的电脑上执行结果为:

    dumping…
    dump1: 1.297s
    dump2: 4.750s
    20992503, 684198, 30.47%
    loading…
    load1: 2.797s
    load2: 10.125s
    

    可以看到,dump 时如果指定了 protocol 为 True,压缩过后的文件的大小只有原来的文件的 30% ,同时无论在 dump 时还是 load 时所耗费的时间都比原来少。因此,一般来说,可以建议把这个值设为 True 。

    另外,pickle 模块还提供 dumps 和 loads 两个方法,用法与上面的 dump 和 load 方法类似,只是不需要输入 file 参数,输入及输出都是字符串对象,有些场景中使用这两个方法可能更为方便。

    下载本文
    显示全文
    专题