视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
Python通过PIL获取图片主要颜色并和颜色库进行对比的方法
2020-11-27 14:32:06 责编:小采
文档


本文实例讲述了Python通过PIL获取图片主要颜色并和颜色库进行对比的方法。分享给大家供大家参考。具体分析如下:

这段代码主要用来从图片提取其主要颜色,类似Goolge和Baidu的图片搜索时可以指定按照颜色搜索,所以我们先需要将每张图片的主要颜色提取出来,然后将颜色划分到与其最接近的颜色段上,然后就可以按照颜色搜索了。

在使用google或者baidu搜图的时候会发现有一个图片颜色选项,感觉非常有意思,有人可能会想这肯定是人为的去划分的,呵呵,有这种可能,但是估计人会累死,开个玩笑,当然是通过机器识别的,海量的图片只有机器识别才能做到。

那用python能不能实现这种功能呢?答案是:能

利用python的PIL模块的强大的图像处理功能就可以做到,下面上代码:
代码如下:

import colorsys
def get_dominant_color(image):
#颜色模式转换,以便输出rgb颜色值
image = image.convert('RGBA')
#生成缩略图,减少计算量,减小cpu压力
image.thumbnail((200, 200))
max_score = None
dominant_color = None
for count, (r, g, b, a) in image.getcolors(image.size[0] * image.size[1]):
# 跳过纯黑色
if a == 0:
continue
saturation = colorsys.rgb_to_hsv(r / 255.0, g / 255.0, b / 255.0)[1]
y = min(abs(r * 2104 + g * 4130 + b * 802 + 4096 + 131072) >> 13, 235)
y = (y - 16.0) / (235 - 16)
# 忽略高亮色
if y > 0.9:
continue
# Calculate the score, preferring highly saturated colors.
# Add 0.1 to the saturation so we don't completely ignore grayscale
# colors by multiplying the count by zero, but still give them a low
# weight.
score = (saturation + 0.1) * count
if score > max_score:
max_score = score
dominant_color = (r, g, b)
return dominant_color

使用方法:

from PIL import Image
print get_dominant_color(Image.open('logo.jpg'))

这样就会返回一个rgb颜色,但是这个值是很精确的范围,那我们如何实现百度图片那样的色域呢??

其实方法很简单,r/g/b都是0-255的值,我们只要把这三个值分别划分相等的区间,然后组合,取近似值。例如:划分为0-127,和128-255,然后自由组合,可以出现八种组合,然后从中挑出比较有代表性的颜色即可。

当然我只是举一个例子,你也可以划分的更细,那样显示的颜色就会更准确~~大家赶快试试吧

希望本文所述对大家的python程序设计有所帮助。

下载本文
显示全文
专题