视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
Python多进程通信Queue、Pipe、Value、Array实例
2020-11-27 14:31:30 责编:小采
文档
queue和pipe的区别: pipe用来在两个进程间通信。queue用来在多个进程间实现通信。 此两种方法为所有系统多进程通信的基本方法,几乎所有的语言都支持此两种方法。

1)Queue & JoinableQueue

queue用来在进程间传递消息,任何可以pickle-able的对象都可以在加入到queue。

multiprocessing.JoinableQueue 是 Queue的子类,增加了task_done()和join()方法。

task_done()用来告诉queue一个task完成。一般地在调用get()获得一个task,在task结束后调用task_done()来通知Queue当前task完成。

join() 阻塞直到queue中的所有的task都被处理(即task_done方法被调用)。

代码:

代码如下:


import multiprocessing
import time

class Consumer(multiprocessing.Process):

def __init__(self, task_queue, result_queue):
multiprocessing.Process.__init__(self)
self.task_queue = task_queue
self.result_queue = result_queue

def run(self):
proc_name = self.name
while True:
next_task = self.task_queue.get()
if next_task is None:
# Poison pill means shutdown
print ('%s: Exiting' % proc_name)
self.task_queue.task_done()
break
print ('%s: %s' % (proc_name, next_task))
answer = next_task() # __call__()
self.task_queue.task_done()
self.result_queue.put(answer)
return


class Task(object):
def __init__(self, a, b):
self.a = a
self.b = b
def __call__(self):
time.sleep(0.1) # pretend to take some time to do the work
return '%s * %s = %s' % (self.a, self.b, self.a * self.b)
def __str__(self):
return '%s * %s' % (self.a, self.b)


if __name__ == '__main__':
# Establish communication queues
tasks = multiprocessing.JoinableQueue()
results = multiprocessing.Queue()

# Start consumers
num_consumers = multiprocessing.cpu_count()
print ('Creating %d consumers' % num_consumers)
consumers = [ Consumer(tasks, results)
for i in range(num_consumers) ]
for w in consumers:
w.start()

# Enqueue jobs
num_jobs = 10
for i in range(num_jobs):
tasks.put(Task(i, i))

# Add a poison pill for each consumer
for i in range(num_consumers):
tasks.put(None)

# Wait for all of the tasks to finish
tasks.join()

# Start printing results
while num_jobs:
result = results.get()
print ('Result:', result)
num_jobs -= 1

注意小技巧: 使用None来表示task处理完毕。

运行结果:

2)pipe

pipe()返回一对连接对象,代表了pipe的两端。每个对象都有send()和recv()方法。

代码:
代码如下:


from multiprocessing import Process, Pipe

def f(conn):
conn.send([42, None, 'hello'])
conn.close()

if __name__ == '__main__':
parent_conn, child_conn = Pipe()
p = Process(target=f, args=(child_conn,))
p.start()
p.join()
print(parent_conn.recv()) # prints "[42, None, 'hello']"

3)Value + Array

Value + Array 是python享内存 映射文件的方法,速度比较快。

代码如下:


from multiprocessing import Process, Value, Array

def f(n, a):
n.value = n.value + 1
for i in range(len(a)):
a[i] = a[i] * 10

if __name__ == '__main__':
num = Value('i', 1)
arr = Array('i', range(10))

p = Process(target=f, args=(num, arr))
p.start()
p.join()

print(num.value)
print(arr[:])

p2 = Process(target=f, args=(num, arr))
p2.start()
p2.join()

print(num.value)
print(arr[:])

# the output is :
# 2
# [0, 10, 20, 30, 40, 50, 60, 70, 80, 90]
# 3
# [0, 100, 200, 300, 400, 500, 600, 700, 800, 900]

下载本文
显示全文
专题