# -*- coding: utf-8 -*-
class Heap(object):
 @classmethod
 def parent(cls, i):
 """父结点下标"""
 return int((i - 1) >> 1);
 @classmethod
 def left(cls, i):
 """左儿子下标"""
 return (i << 1) + 1;
 @classmethod
 def right(cls, i):
 """右儿子下标"""
 return (i << 1) + 2;
class MaxPriorityQueue(list, Heap):
 @classmethod
 def max_heapify(cls, A, i, heap_size):
 """最大堆化A[i]为根的子树"""
 l, r = cls.left(i), cls.right(i)
 if l < heap_size and A[l] > A[i]:
 largest = l
 else:
 largest = i
 if r < heap_size and A[r] > A[largest]:
 largest = r
 if largest != i:
 A[i], A[largest] = A[largest], A[i]
 cls.max_heapify(A, largest, heap_size)
 def maximum(self):
 """返回最大元素,伪码如下:
 HEAP-MAXIMUM(S)
 1 return A[1]
 T(n) = O(1)
 """
 return self[0]
 def extract_max(self):
 """去除并返回最大元素,伪码如下:
 HEAP-EXTRACT-MAX(A)
 1 if heap-size[A] < 1
 2 then error "heap underflow"
 3 max ← A[1]
 4 A[1] ← A[heap-size[A]] // 尾元素放到第一位
 5 heap-size[A] ← heap-size[A] - 1 // 减小heap-size[A]
 6 MAX-HEAPIFY(A, 1) // 保持最大堆性质
 7 return max
 T(n) = θ(lgn)
 """
 heap_size = len(self)
 assert heap_size > 0, "heap underflow"
 val = self[0]
 tail = heap_size - 1
 self[0] = self[tail]
 self.max_heapify(self, 0, tail)
 self.pop(tail)
 return val
 def increase_key(self, i, key):
 """将i处的值增加到key,伪码如下:
 HEAP-INCREASE-KEY(A, i, key)
 1 if key < A[i]
 2 the error "new key is smaller than current key"
 3 A[i] ← key
 4 while i > 1 and A[PARENT(i)] < A[i] // 不是根结点且父结点更小时
 5 do exchange A[i] ↔ A[PARENT(i)] // 交换两元素
 6 i ← PARENT(i) // 指向父结点位置
 T(n) = θ(lgn)
 """
 val = self[i]
 assert key >= val, "new key is smaller than current key"
 self[i] = key
 parent = self.parent
 while i > 0 and self[parent(i)] < self[i]:
 self[i], self[parent(i)] = self[parent(i)], self[i]
 i = parent(i)
 def insert(self, key):
 """将key插入A,伪码如下:
 MAX-HEAP-INSERT(A, key)
 1 heap-size[A] ← heap-size[A] + 1 // 对元素个数增加
 2 A[heap-size[A]] ← -∞ // 初始新增加元素为-∞
 3 HEAP-INCREASE-KEY(A, heap-size[A], key) // 将新增元素增加到key
 T(n) = θ(lgn)
 """
 self.append(float('-inf'))
 self.increase_key(len(self) - 1, key)
if __name__ == '__main__':
 import random
 keys = range(10)
 random.shuffle(keys)
 print(keys)
 queue = MaxPriorityQueue() # 插入方式建最大堆
 for i in keys:
 queue.insert(i)
 print(queue)
print('*' * 30)
 for i in range(len(keys)):
 val = i % 3
 if val == 0:
 val = queue.extract_max() # 去除并返回最大元素
 elif val == 1:
 val = queue.maximum() # 返回最大元素
 else:
 val = queue[1] + 10
 queue.increase_key(1, val) # queue[1]增加10
 print(queue, val)
print([queue.extract_max() for i in range(len(queue))])
下载本文