视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
bagging boosting区别
2021-11-16 10:20:25 责编:小采
文档


bagging与boosting是两种不同的集成算法,Bagging采用重复取样:boostrap 每个个体分类器所采用的训练样本都是从训练集中按等概率抽取的,因此Bagging的各子网能够很好的覆盖训练样本空间,从而有着良好的稳定性。

                      

  而Boosting注重分类错误的样本,将个体子网分类错误的训练样本的权重提高,降低分类错误的样本权重,并依据修改后的样本权重来生成新的训练样本空间并用来训练下一个个体分类器。然而,由于Boosting算法可能会将噪声样本或分类边界样本的权重过分累积,因此Boosting很不稳定,但其在通常情况下,其泛化能力是最理想的集成算法之一。

  

                  

下载本文
显示全文
专题