视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
什么是并矢
2022-04-03 13:59:13 责编:小OO
文档


1、所谓并矢,是矢量的一种组合形式,如AB,其中两个矢量A、B互相不必有联系。在三维情形,它有九个分量。并矢也可表示成一个对称矩阵。它对一个矢量C右乘C·(AB)=(C·A)B或左乘(AB·C)=A (B·C),就成为有标量倍数的矢量。

2、采用并矢记号,可以简洁地表示任意偶极源所引起的电场和磁场。令偶极源的矩(电矩或磁矩)为a,位于r┡点, 可以把这矩按r┡点的正交坐标轴展开a=a1u姈+a2u娦+a3u娅,u徾是r┡点沿坐标轴的单位矢量,设r┡点以u徾(i=1,2,3,下同)为矩的偶极源在r点引起的场(电场或磁场)的i分量为Gij(r,r┡),则在线性媒质中,以a为矩的偶极源在r点所引起的场就等于,这里的ui是r点的沿坐标轴的单位矢量,它与u媴可以不平行(例如圆柱坐标系中的呜和ρ都逐点改变方向)。由于,r点的场矢量可写作=G(r,r)·a,其中是个并矢,称为并矢格林函数。它的分量Gij(r,r┡)的第一个下标i和第一组宗量r是场的分量标号和场点坐标;第二个下标i和第二组宗量r┡是源矩的下标和源点的坐标。

下载本文
显示全文
专题